Sort by:
Page 6 of 33324 results

Advanced Three-Dimensional Assessment and Planning for Hallux Valgus.

Forin Valvecchi T, Marcolli D, De Cesar Netto C

pubmed logopapersJun 1 2025
The article discusses advanced three-dimensional evaluation of hallux valgus deformity using weightbearing computed tomography. Conventional two-dimensional radiographs fall short in assessing the complexity of hallux valgus deformities, whereas weightbearing computed tomography provides detailed insights into bone alignment and joint stability in a weightbearing state. Recent studies have highlighted the significance of first ray hypermobility and intrinsic metatarsal rotation in hallux valgus, influencing surgical planning and outcomes. The integration of semiautomatic and artificial intelligence-assisted tools with weightbearing computed tomography is enhancing the precision of deformity assessment, leading to more personalized and effective hallux valgus management.

An Optimized Framework of QSM Mask Generation Using Deep Learning: QSMmask-Net.

Lee G, Jung W, Sakaie KE, Oh SH

pubmed logopapersJun 1 2025
Quantitative susceptibility mapping (QSM) provides the spatial distribution of magnetic susceptibility within tissues through sequential steps: phase unwrapping and echo combination, mask generation, background field removal, and dipole inversion. Accurate mask generation is crucial, as masks excluding regions outside the brain and without holes are necessary to minimize errors and streaking artifacts during QSM reconstruction. Variations in susceptibility values can arise from different mask generation methods, highlighting the importance of optimizing mask creation. In this study, we propose QSMmask-net, a deep neural network-based method for generating precise QSM masks. QSMmask-net achieved the highest Dice score compared to other mask generation methods. Mean susceptibility values using QSMmask-net masks showed the lowest differences from manual masks (ground truth) in simulations and healthy controls (no significant difference, p > 0.05). Linear regression analysis confirmed a strong correlation with manual masks for hemorrhagic lesions (slope = 0.9814 ± 0.007, intercept = 0.0031 ± 0.001, R<sup>2</sup> = 0.9992, p < 0.05). We have demonstrated that mask generation methods can affect the susceptibility value estimations. QSMmask-net reduces the labor required for mask generation while providing mask quality comparable to manual methods. The proposed method enables users without specialized expertise to create optimized masks, potentially broadening QSM applicability efficiently.

Integrating anatomy and electrophysiology in the healthy human heart: Insights from biventricular statistical shape analysis using universal coordinates.

Van Santvliet L, Zappon E, Gsell MAF, Thaler F, Blondeel M, Dymarkowski S, Claessen G, Willems R, Urschler M, Vandenberk B, Plank G, De Vos M

pubmed logopapersJun 1 2025
A cardiac digital twin is a virtual replica of a patient-specific heart, mimicking its anatomy and physiology. A crucial step of building a cardiac digital twin is anatomical twinning, where the computational mesh of the digital twin is tailored to the patient-specific cardiac anatomy. In a number of studies, the effect of anatomical variation on clinically relevant functional measurements like electrocardiograms (ECGs) is investigated, using computational simulations. While such a simulation environment provides researchers with a carefully controlled ground truth, the impact of anatomical differences on functional measurements in real-world patients remains understudied. In this study, we develop a biventricular statistical shape model and use it to quantify the effect of biventricular anatomy on ECG-derived and demographic features, providing novel insights for the development of digital twins of cardiac electrophysiology. To this end, a dataset comprising high-resolution cardiac CT scans from 271 healthy individuals, including athletes, is utilized. Furthermore, a novel, universal, ventricular coordinate-based method is developed to establish lightweight shape correspondence. The performance of the shape model is rigorously established, focusing on its dimensionality reduction capabilities and the training data requirements. The most important variability in healthy ventricles captured by the model is their size, followed by their elongation. These anatomical factors are found to significantly correlate with ECG-derived and demographic features. Additionally, a comprehensive synthetic cohort is made available, featuring ready-to-use biventricular meshes with fiber structures and anatomical region annotations. These meshes are well-suited for electrophysiological simulations.

Artificial intelligence in fetal brain imaging: Advancements, challenges, and multimodal approaches for biometric and structural analysis.

Wang L, Fatemi M, Alizad A

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is transforming fetal brain imaging by addressing key challenges in diagnostic accuracy, efficiency, and data integration in prenatal care. This review explores AI's application in enhancing fetal brain imaging through ultrasound (US) and magnetic resonance imaging (MRI), with a particular focus on multimodal integration to leverage their complementary strengths. By critically analyzing state-of-the-art AI methodologies, including deep learning frameworks and attention-based architectures, this study highlights significant advancements alongside persistent challenges. Notable barriers include the scarcity of diverse and high-quality datasets, computational inefficiencies, and ethical concerns surrounding data privacy and security. Special attention is given to multimodal approaches that integrate US and MRI, combining the accessibility and real-time imaging of US with the superior soft tissue contrast of MRI to improve diagnostic precision. Furthermore, this review emphasizes the transformative potential of AI in fostering clinical adoption through innovations such as real-time diagnostic tools and human-AI collaboration frameworks. By providing a comprehensive roadmap for future research and implementation, this study underscores AI's potential to redefine fetal imaging practices, enhance diagnostic accuracy, and ultimately improve perinatal care outcomes.

Deep learning for liver lesion segmentation and classification on staging CT scans of colorectal cancer patients: a multi-site technical validation study.

Bashir U, Wang C, Smillie R, Rayabat Khan AK, Tamer Ahmed H, Ordidge K, Power N, Gerlinger M, Slabaugh G, Zhang Q

pubmed logopapersJun 1 2025
To validate a liver lesion detection and classification model using staging computed tomography (CT) scans of colorectal cancer (CRC) patients. A UNet-based deep learning model was trained on 272 public liver tumour CT scans and tested on 220 CRC staging CTs acquired from a single institution (2014-2019). Performance metrics included lesion detection rates by size (<10 mm, 10-20 mm, >20 mm), segmentation accuracy (dice similarity coefficient, DSC), volume measurement agreement (Bland-Altman limits of agreement, LOAs; intraclass correlation coefficient, ICC), and classification accuracy (malignant vs benign) at patient and lesion levels (detected lesions only). The model detected 743 out of 884 lesions (84%), with detection rates of 75%, 91.3%, and 96% for lesions <10 mm, 10-20 mm, and >20 mm, respectively. The median DSC was 0.76 (95% CI: 0.72-0.80) for lesions <10 mm, 0.83 (95% CI: 0.79-0.86) for 10-20 mm, and 0.85 (95% CI: 0.82-0.88) for >20 mm. Bland-Altman analysis showed a mean volume bias of -0.12 cm<sup>3</sup> (LOAs: -1.68 to +1.43 cm<sup>3</sup>), and ICC was 0.81. Lesion-level classification showed 99.5% sensitivity, 65.7% specificity, 53.8% positive predictive value (PPV), 99.7% negative predictive value (NPV), and 75.4% accuracy. Patient-level classification had 100% sensitivity, 27.1% specificity, 59.2% PPV, 100% NPV, and 64.5% accuracy. The model demonstrates strong lesion detection and segmentation performance, particularly for sub-centimetre lesions. Although classification accuracy was moderate, the 100% NPV suggests strong potential as a CRC staging screening tool. Future studies will assess its impact on radiologist performance and efficiency.

Virtual monochromatic image-based automatic segmentation strategy using deep learning method.

Chen L, Yu S, Chen Y, Wei X, Yang J, Guo C, Zeng W, Yang C, Zhang J, Li T, Lin C, Le X, Zhang Y

pubmed logopapersJun 1 2025
The image quality of single-energy CT (SECT) limited the accuracy of automatic segmentation. Dual-energy CT (DECT) may potentially improve automatic segmentation yet the performance and strategy have not been investigated thoroughly. Based on DECT-generated virtual monochromatic images (VMIs), this study proposed a novel deep learning model (MIAU-Net) and evaluated the segmentation performance on the head organs-at-risk (OARs). The VMIs from 40 keV to 190 keV were retrospectively generated at intervals of 10 keV using the DECT of 46 patients. Images with expert delineation were used for training, validation, and testing MIAU-Net for automatic segmentation. Theperformance of MIAU-Net was compared with the existingU-Net, Attention-UNet, nnU-Net and TransFuse methods based on Dice Similarity Coefficient (DSC). Correlationanalysis was performed to evaluate and optimize the impact of different virtual energies on the accuracy of segmentation. Using MIAU-Net, average DSCs across all virtual energy levels were 93.78 %, 81.75 %, 84.46 %, 92.85 %, 94.40 %, and 84.75 % for the brain stem, optic chiasm, lens, mandible, eyes, and optic nerves, respectively, higher than the previous publications using SECT. MIAU-Net achieved the highest average DSC (88.84 %) and the lowest parameters (14.54 M) in all tested models. The results suggested that 60 keV-80 keV is the optimal VMI energy level for soft tissue delineation, while 100 keV is optimal for skeleton segmentation. This work proposed and validated a novel deep learning model for automatic segmentation based on DECT, suggesting potential advantages and OAR-specific optimal energy of using VMIs for automatic delineation.

Quantifying the Unknowns of Plaque Morphology: The Role of Topological Uncertainty in Coronary Artery Disease.

Singh Y, Hathaway QA, Dinakar K, Shaw LJ, Erickson B, Lopez-Jimenez F, Bhatt DL

pubmed logopapersJun 1 2025
This article aimed to explore topological uncertainty in medical imaging, particularly in assessing coronary artery calcification using artificial intelligence (AI). Topological uncertainty refers to ambiguities in spatial and structural characteristics of medical features, which can impact the interpretation of coronary plaques. The article discusses the challenges of integrating AI with topological considerations and the need for specialized methodologies beyond traditional performance metrics. It highlights advancements in quantifying topological uncertainty, including the use of persistent homology and topological data analysis techniques. The importance of standardization in methodologies and ethical considerations in AI deployment are emphasized. It also outlines various types of uncertainty in topological frameworks for coronary plaques, categorizing them as quantifiable and controllable or quantifiable and not controllable. Future directions include developing AI algorithms that incorporate topological insights, establishing standardized protocols, and exploring ethical implications to revolutionize cardiovascular care through personalized treatment plans guided by sophisticated topological analysis. Recognizing and quantifying topological uncertainty in medical imaging as AI emerges is critical. Exploring topological uncertainty in coronary artery disease will revolutionize cardiovascular care, promising enhanced precision and personalization in diagnostics and treatment for millions affected by cardiovascular diseases.

MEF-Net: Multi-scale and edge feature fusion network for intracranial hemorrhage segmentation in CT images.

Zhang X, Zhang S, Jiang Y, Tian L

pubmed logopapersJun 1 2025
Intracranial Hemorrhage (ICH) refers to cerebral bleeding resulting from ruptured blood vessels within the brain. Delayed and inaccurate diagnosis and treatment of ICH can lead to fatality or disability. Therefore, early and precise diagnosis of intracranial hemorrhage is crucial for protecting patients' lives. Automatic segmentation of hematomas in CT images can provide doctors with essential diagnostic support and improve diagnostic efficiency. CT images of intracranial hemorrhage exhibit characteristics such as multi-scale, multi-target, and blurred edges. This paper proposes a Multi-scale and Edge Feature Fusion Network (MEF-Net) to effectively extract multi-scale and edge features and fully fuse these features through a fusion mechanism. The network first extracts the multi-scale features and edge features of the image through the encoder and the edge detection module respectively, then fuses the deep information, and employs the multi-kernel attention module to process the shallow features, enhancing the multi-target recognition capability. Finally, the feature maps from each module are combined to produce the segmentation result. Experimental results indicate that this method has achieved average DICE scores of 0.7508 and 0.7443 in two public datasets respectively, surpassing those of several advanced methods in medical image segmentation currently available. The proposed MEF-Net significantly improves the accuracy of intracranial hemorrhage segmentation.

Visceral Fat Quantified by a Fully Automated Deep-Learning Algorithm and Risk of Incident and Recurrent Diverticulitis.

Ha J, Bridge CP, Andriole KP, Kambadakone A, Clark MJ, Narimiti A, Rosenthal MH, Fintelmann FJ, Gollub RL, Giovannucci EL, Strate LL, Ma W, Chan AT

pubmed logopapersJun 1 2025
Obesity is a risk factor for diverticulitis. However, it remains unclear whether visceral fat area, a more precise measurement of abdominal fat, is associated with the risk of diverticulitis. To estimate the risk of incident and recurrent diverticulitis according to visceral fat area. A retrospective cohort study. The Mass General Brigham Biobank. A total of 6654 patients who underwent abdominal CT for clinical indications and had no diagnosis of diverticulitis, IBD, or cancer before the scan were included. Visceral fat area, subcutaneous fat area, and skeletal muscle area were quantified using a deep-learning model applied to abdominal CT. The main exposures were z -scores of body composition metrics normalized by age, sex, and race. Diverticulitis cases were identified using the International Classification of Diseases codes for the primary or admitting diagnosis from the electronic health records. The risks of incident diverticulitis, complicated diverticulitis, and recurrent diverticulitis requiring hospitalization according to quartiles of body composition metrics z -scores were estimated. A higher visceral fat area z -score was associated with an increased risk of incident diverticulitis (multivariable HR comparing the highest vs lowest quartile, 2.09; 95% CI, 1.48-2.95; p for trend <0.0001), complicated diverticulitis (HR, 2.56; 95% CI, 1.10-5.99; p for trend = 0.02), and recurrence requiring hospitalization (HR, 2.76; 95% CI, 1.15-6.62; p for trend = 0.03). The association between visceral fat area and diverticulitis was not materially different among different strata of BMI. Subcutaneous fat area and skeletal muscle area were not significantly associated with diverticulitis. The study population was limited to individuals who underwent CT scans for medical indication. Higher visceral fat area derived from CT was associated with incident and recurrent diverticulitis. Our findings provide insight into the underlying pathophysiology of diverticulitis and may have implications for preventive strategies. See Video Abstract . ANTECEDENTES:La obesidad es un factor de riesgo de la diverticulitis. Sin embargo, sigue sin estar claro si el área de grasa visceral, con medida más precisa de la grasa abdominal esté asociada con el riesgo de diverticulitis.OBJETIVO:Estimar el riesgo de diverticulitis incidente y recurrente de acuerdo con el área de grasa visceral.DISEÑO:Un estudio de cohorte retrospectivo.AJUSTE:El Biobanco Mass General Brigham.PACIENTES:6.654 pacientes sometidos a una TC abdominal por indicaciones clínicas y sin diagnóstico de diverticulitis, enfermedad inflamatoria intestinal o cáncer antes de la exploración.PRINCIPALES MEDIDAS DE RESULTADOS:Se cuantificaron, área de grasa visceral, área de grasa subcutánea y área de músculo esquelético, utilizando un modelo de aprendizaje profundo aplicado a la TC abdominal. Las principales exposiciones fueron puntuaciones z de métricas de composición corporal, normalizadas por edad, sexo y raza. Los casos de diverticulitis se definieron con los códigos ICD para el diagnóstico primario o de admisión de los registros de salud electrónicos. Se estimaron los riesgos de diverticulitis incidente, diverticulitis complicada y diverticulitis recurrente que requiriera hospitalización según los cuartiles de las puntuaciones z de las métricas de composición corporal.RESULTADOS:Una puntuación z más alta del área de grasa visceral se asoció con un mayor riesgo de diverticulitis incidente (HR multivariable que compara el cuartil más alto con el más bajo, 2,09; IC del 95 %, 1,48-2,95; P para la tendencia < 0,0001), diverticulitis complicada (HR, 2,56; IC del 95 %, 1,10-5,99; P para la tendencia = 0,02) y recurrencia que requiriera hospitalización (HR, 2,76; IC del 95 %, 1,15-6,62; P para la tendencia = 0,03). La asociación entre el área de grasa visceral y la diverticulitis no fue materialmente diferente entre los diferentes estratos del índice de masa corporal. El área de grasa subcutánea y el área del músculo esquelético no se asociaron significativamente con la diverticulitis.LIMITACIONES:La población del estudio se limitó a individuos sometidos a tomografías computarizadas por indicación médica.CONCLUSIÓN:Una mayor área de grasa visceral derivada de la tomografía computarizada se asoció con diverticulitis incidente y recurrente. Nuestros hallazgos brindan información sobre la fisiopatología subyacente de la diverticulitis y pueden tener implicaciones para las estrategias preventivas. (Traducción: Dr. Fidel Ruiz Healy ).

An Intelligent Model of Segmentation and Classification Using Enhanced Optimization-Based Attentive Mask RCNN and Recurrent MobileNet With LSTM for Multiple Sclerosis Types With Clinical Brain MRI.

Gopichand G, Bhargavi KN, Ramprasad MVS, Kodavanti PV, Padmavathi M

pubmed logopapersJun 1 2025
In healthcare sector, magnetic resonance imaging (MRI) images are taken for multiple sclerosis (MS) assessment, classification, and management. However, interpreting an MRI scan requires an exceptional amount of skill because abnormalities on scans are frequently inconsistent with clinical symptoms, making it difficult to convert the findings into effective treatment strategies. Furthermore, MRI is an expensive process, and its frequent utilization to monitor an illness increases healthcare costs. To overcome these drawbacks, this research employs advanced technological approaches to develop a deep learning system for classifying types of MS through clinical brain MRI scans. The major innovation of this model is to influence the convolution network with attention concept and recurrent-based deep learning for classifying the disorder; this also proposes an optimization algorithm for tuning the parameter to enhance the performance. Initially, the total images as 3427 are collected from database, in which the collected samples are categorized for training and testing phase. Here, the segmentation is carried out by adaptive and attentive-based mask regional convolution neural network (AA-MRCNN). In this phase, the MRCNN's parameters are finely tuned with an enhanced pine cone optimization algorithm (EPCOA) to guarantee outstanding efficiency. Further, the segmented image is given to recurrent MobileNet with long short term memory (RM-LSTM) for getting the classification outcomes. Through experimental analysis, this deep learning model is acquired 95.4% for accuracy, 95.3% for sensitivity, and 95.4% for specificity. Hence, these results prove that it has high potential for appropriately classifying the sclerosis disorder.
Page 6 of 33324 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.