Sort by:
Page 6 of 21210 results

Emerging Frameworks for Objective Task-based Evaluation of Quantitative Medical Imaging Methods

Yan Liu, Huitian Xia, Nancy A. Obuchowski, Richard Laforest, Arman Rahmim, Barry A. Siegel, Abhinav K. Jha

arxiv logopreprintJul 7 2025
Quantitative imaging (QI) is demonstrating strong promise across multiple clinical applications. For clinical translation of QI methods, objective evaluation on clinically relevant tasks is essential. To address this need, multiple evaluation strategies are being developed. In this paper, based on previous literature, we outline four emerging frameworks to perform evaluation studies of QI methods. We first discuss the use of virtual imaging trials (VITs) to evaluate QI methods. Next, we outline a no-gold-standard evaluation framework to clinically evaluate QI methods without ground truth. Third, a framework to evaluate QI methods for joint detection and quantification tasks is outlined. Finally, we outline a framework to evaluate QI methods that output multi-dimensional parameters, such as radiomic features. We review these frameworks, discussing their utilities and limitations. Further, we examine future research areas in evaluation of QI methods. Given the recent advancements in PET, including long axial field-of-view scanners and the development of artificial-intelligence algorithms, we present these frameworks in the context of PET.

Early warning and stratification of the elderly cardiopulmonary dysfunction-related diseases: multicentre prospective study protocol.

Zhou X, Jin Q, Xia Y, Guan Y, Zhang Z, Guo Z, Liu Z, Li C, Bai Y, Hou Y, Zhou M, Liao WH, Lin H, Wang P, Liu S, Fan L

pubmed logopapersJul 5 2025
In China, there is a lack of standardised clinical imaging databases for multidimensional evaluation of cardiopulmonary diseases. To address this gap, this study protocol launched a project to build a clinical imaging technology integration and a multicentre database for early warning and stratification of cardiopulmonary dysfunction in the elderly. This study employs a cross-sectional design, enrolling over 6000 elderly participants from five regions across China to evaluate cardiopulmonary function and related diseases. Based on clinical criteria, participants are categorized into three groups: a healthy cardiopulmonary function group, a functional decrease group and an established cardiopulmonary diseases group. All subjects will undergo comprehensive assessments including chest CT scans, echocardiography, and laboratory examinations. Additionally, at least 50 subjects will undergo cardiopulmonary exercise testing (CPET). By leveraging artificial intelligence technology, multimodal data will be integrated to establish reference ranges for cardiopulmonary function in the elderly population, as well as to develop early-warning models and severity grading standard models. The study has been approved by the local ethics committee of Shanghai Changzheng Hospital (approval number: 2022SL069A). All the participants will sign the informed consent. The results will be disseminated through peer-reviewed publications and conferences.

Clinical obstacles to machine-learning POCUS adoption and system-wide AI implementation (The COMPASS-AI survey).

Wong A, Roslan NL, McDonald R, Noor J, Hutchings S, D'Costa P, Via G, Corradi F

pubmed logopapersJul 3 2025
Point-of-care ultrasound (POCUS) has become indispensable in various medical specialties. The integration of artificial intelligence (AI) and machine learning (ML) holds significant promise to enhance POCUS capabilities further. However, a comprehensive understanding of healthcare professionals' perspectives on this integration is lacking. This study aimed to investigate the global perceptions, familiarity, and adoption of AI in POCUS among healthcare professionals. An international, web-based survey was conducted among healthcare professionals involved in POCUS. The survey instrument included sections on demographics, familiarity with AI, perceived utility, barriers (technological, training, trust, workflow, legal/ethical), and overall perceptions regarding AI-assisted POCUS. The data was analysed by descriptive statistics, frequency distributions, and group comparisons (using chi-square/Fisher's exact test and t-test/Mann-Whitney U test). This study surveyed 1154 healthcare professionals on perceived barriers to implementing AI in point-of-care ultrasound. Despite general enthusiasm, with 81.1% of respondents expressing agreement or strong agreement, significant barriers were identified. The most frequently cited single greatest barriers were Training & Education (27.1%) and Clinical Validation & Evidence (17.5%). Analysis also revealed that perceptions of specific barriers vary significantly based on demographic factors, including region of practice, medical specialty, and years of healthcare experience. This novel global survey provides critical insights into the perceptions and adoption of AI in POCUS. Findings highlight considerable enthusiasm alongside crucial challenges, primarily concerning training, validation, guidelines, and support. Addressing these barriers is essential for the responsible and effective implementation of AI in POCUS.

Differentiated thyroid cancer and positron emission computed tomography: when, how and why?

Coca Pelaz A, Rodrigo JP, Zafereo M, Nixon I, Guntinas-Lichius O, Randolph G, Civantos FJ, Pace-Asciak P, Jara MA, Kuker R, Ferlito A

pubmed logopapersJul 3 2025
Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) has become an indispensable tool in oncology, offering both metabolic and anatomical insights into tumor behavior. Most differentiated thyroid carcinomas (DTC) are indolent and therefore FDG PET/CT is not routinely incorporated into management. However, in biologically aggressive DTCs, FDG PET/CT plays a crucial role in detecting recurrence and metastases. This narrative review with articles from the last 25 years from PubMed database, explores the evolving role of FDG PET/CT, focusing on its utility in recurrence detection, staging, and follow-up of radioactive iodine (RAI)-refractory cases. Current guidelines recommend FDG PET/CT primarily for high-risk patients with elevated thyroglobulin levels and negative RAI scans (TENIS syndrome). We also examine advancements in PET imaging, novel radiotracers and theragnostic approaches that enhance diagnostic accuracy and treatment monitoring. While FDG PET/CT has proven valuable in biologically aggressive DTC, its routine use remains limited by cost, accessibility, and concerns regarding radiation exposure in younger patients requiring repeated imaging studies. Future developments in molecular imaging, including novel tracers and artificial intelligence-driven analysis, are expected to refine its role, leading to more personalized and effective management, though economic and reimbursement challenges remain important considerations for broader adoption.

Artificial Intelligence-Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality.

Khosravi P, Fuchs TJ, Ho DJ

pubmed logopapersJul 2 2025
The integration of artificial intelligence (AI) in cancer research has significantly advanced radiology, pathology, and multimodal approaches, offering unprecedented capabilities in image analysis, diagnosis, and treatment planning. AI techniques provide standardized assistance to clinicians, in which many diagnostic and predictive tasks are manually conducted, causing low reproducibility. These AI methods can additionally provide explainability to help clinicians make the best decisions for patient care. This review explores state-of-the-art AI methods, focusing on their application in image classification, image segmentation, multiple instance learning, generative models, and self-supervised learning. In radiology, AI enhances tumor detection, diagnosis, and treatment planning through advanced imaging modalities and real-time applications. In pathology, AI-driven image analysis improves cancer detection, biomarker discovery, and diagnostic consistency. Multimodal AI approaches can integrate data from radiology, pathology, and genomics to provide comprehensive diagnostic insights. Emerging trends, challenges, and future directions in AI-driven cancer research are discussed, emphasizing the transformative potential of these technologies in improving patient outcomes and advancing cancer care. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

[AI-based applications in medical image computing].

Kepp T, Uzunova H, Ehrhardt J, Handels H

pubmed logopapersJul 2 2025
The processing of medical images plays a central role in modern diagnostics and therapy. Automated processing and analysis of medical images can efficiently accelerate clinical workflows and open new opportunities for improved patient care. However, the high variability, complexity, and varying quality of medical image data pose significant challenges. In recent years, the greatest progress in medical image analysis has been achieved through artificial intelligence (AI), particularly by using deep neural networks in the context of deep learning. These methods are successfully applied in medical image analysis, including segmentation, registration, and image synthesis.AI-based segmentation allows for the precise delineation of organs, tissues, or pathological changes. The application of AI-based image registration supports the accelerated creation of 3D planning models for complex surgeries by aligning relevant anatomical structures from different imaging modalities (e.g., CT, MRI, and PET) or time points. Generative AI methods can be used to generate additional image data for the improved training of AI models, thereby expanding the potential applications of deep learning methods in medicine. Examples from radiology, ophthalmology, dermatology, and surgery are described to illustrate their practical relevance and the potential of AI in image-based diagnostics and therapy.

Medical image translation with deep learning: Advances, datasets and perspectives.

Chen J, Ye Z, Zhang R, Li H, Fang B, Zhang LB, Wang W

pubmed logopapersJul 1 2025
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.

Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation.

Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y

pubmed logopapersJul 1 2025
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.

Redefining prostate cancer care: innovations and future directions in active surveillance.

Koett M, Melchior F, Artamonova N, Bektic J, Heidegger I

pubmed logopapersJul 1 2025
This review provides a critical analysis of recent advancements in active surveillance (AS), emphasizing updates from major international guidelines and their implications for clinical practice. Recent revisions to international guidelines have broadened the eligibility criteria for AS to include selected patients with ISUP grade group 2 prostate cancer. This adjustment acknowledges that certain intermediate-risk cancers may be appropriate for AS, reflecting a heightened focus on achieving a balance between oncologic control and maintaining quality of life by minimizing the risk of overtreatment. This review explores key innovations in AS for prostate cancer, including multi parametric magnetic resonance imaging (mpMRI), genomic biomarkers, and risk calculators, which enhance patient selection and monitoring. While promising, their routine use remains debated due to guideline inconsistencies, cost, and accessibility. Special focus is given to biomarkers for identifying ISUP grade group 2 cancers suitable for AS. Additionally, the potential of artificial intelligence to improve diagnostic accuracy and risk stratification is examined. By integrating these advancements, this review provides a critical perspective on optimizing AS for more personalized and effective prostate cancer management.

Patient radiation safety in the intensive care unit.

Quaia E

pubmed logopapersJul 1 2025
The aim of this commentary review was to summarize the main research evidences on radiation exposure and to underline the best clinical and radiological practices to limit radiation exposure in ICU patients. Radiological imaging is essential for management of patients in the ICU despite the risk of ionizing radiation exposure in monitoring critically ill patients, especially in those with prolonged hospitalization. In optimizing radiation exposure reduction for ICU patients, multiple parties and professionals must be considered, including hospital management, clinicians, radiographers, and radiologists. Modified diagnostic reference levels for ICU patients, based on UK guidance, may be proposed, especially considering the frequent repetition of x-ray diagnostic procedures in ICU patients. Best practices may reduce radiation exposure in ICU patients with particular emphasis on justification and radiation exposure optimization in conventional radiology, interventional radiology and fluoroscopy, CT, and nuclear medicine. CT contributes most predominately to radiation exposure in ICU patients. Low-dose (<1 mSv in effective dose) or even ultra-low-dose CT protocols, iterative reconstruction algorithms, and artificial intelligence-based innovative dose-reduction strategies could reduce radiation exposure and related oncogenic risks.
Page 6 of 21210 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.