Sort by:
Page 6 of 987 results

Ovarian Cancer Screening: Recommendations and Future Prospects.

Chiu S, Staley H, Jeevananthan P, Mascarenhas S, Fotopoulou C, Rockall A

pubmed logopapersMay 23 2025
Ovarian cancer remains a significant cause of mortality among women, largely due to challenges in early detection. Current screening strategies, including transvaginal ultrasound and CA125 testing, have limited sensitivity and specificity, particularly in asymptomatic women or those with early-stage disease. The European Society of Gynaecological Oncology, the European Society for Medical Oncology, the European Society of Pathology, and other health organizations currently do not recommend routine population-based screening for ovarian cancer due to the high rates of false-positives and the absence of a reliable early detection method.This review examines existing ovarian cancer screening guidelines and explores recent advances in diagnostic technologies including radiomics, artificial intelligence, point-of-care testing, and novel detection methods.Emerging technologies show promise with respect to improving ovarian cancer detection by enhancing sensitivity and specificity compared to traditional methods. Artificial intelligence and radiomics have potential for revolutionizing ovarian cancer screening by identifying subtle diagnostic patterns, while liquid biopsy-based approaches and cell-free DNA profiling enable tumor-specific biomarker detection. Minimally invasive methods, such as intrauterine lavage and salivary diagnostics, provide avenues for population-wide applicability. However, large-scale validation is required to establish these techniques as effective and reliable screening options. · Current ovarian cancer screening methods lack sensitivity and specificity for early-stage detection.. · Emerging technologies like artificial intelligence, radiomics, and liquid biopsy offer improved diagnostic accuracy.. · Large-scale clinical validation is required, particularly for baseline-risk populations.. · Chiu S, Staley H, Jeevananthan P et al. Ovarian Cancer Screening: Recommendations and Future Prospects. Rofo 2025; DOI 10.1055/a-2589-5696.

Brain age prediction from MRI scans in neurodegenerative diseases.

Papouli A, Cole JH

pubmed logopapersMay 22 2025
This review explores the use of brain age estimation from MRI scans as a biomarker of brain health. With disorders like Alzheimer's and Parkinson's increasing globally, there is an urgent need for early detection tools that can identify at-risk individuals before cognitive symptoms emerge. Brain age offers a noninvasive, quantitative measure of neurobiological ageing, with applications in early diagnosis, disease monitoring, and personalized medicine. Studies show that individuals with Alzheimer's, mild cognitive impairment (MCI), and Parkinson's have older brain ages than their chronological age. Longitudinal research indicates that brain-predicted age difference (brain-PAD) rises with disease progression and often precedes cognitive decline. Advances in deep learning and multimodal imaging have improved the accuracy and interpretability of brain age predictions. Moreover, socioeconomic disparities and environmental factors significantly affect brain aging, highlighting the need for inclusive models. Brain age estimation is a promising biomarker for identify future risk of neurodegenerative disease, monitoring progression, and helping prognosis. Challenges like implementation of standardization, demographic biases, and interpretability remain. Future research should integrate brain age with biomarkers and multimodal imaging to enhance early diagnosis and intervention strategies.

Three-Blind Validation Strategy of Deep Learning Models for Image Segmentation.

Larroza A, Pérez-Benito FJ, Tendero R, Perez-Cortes JC, Román M, Llobet R

pubmed logopapersMay 21 2025
Image segmentation plays a central role in computer vision applications such as medical imaging, industrial inspection, and environmental monitoring. However, evaluating segmentation performance can be particularly challenging when ground truth is not clearly defined, as is often the case in tasks involving subjective interpretation. These challenges are amplified by inter- and intra-observer variability, which complicates the use of human annotations as a reliable reference. To address this, we propose a novel validation framework-referred to as the three-blind validation strategy-that enables rigorous assessment of segmentation models in contexts where subjectivity and label variability are significant. The core idea is to have a third independent expert, blind to the labeler identities, assess a shuffled set of segmentations produced by multiple human annotators and/or automated models. This allows for the unbiased evaluation of model performance and helps uncover patterns of disagreement that may indicate systematic issues with either human or machine annotations. The primary objective of this study is to introduce and demonstrate this validation strategy as a generalizable framework for robust model evaluation in subjective segmentation tasks. We illustrate its practical implementation in a mammography use case involving dense tissue segmentation while emphasizing its potential applicability to a broad range of segmentation scenarios.

Adversarial artificial intelligence in radiology: Attacks, defenses, and future considerations.

Dietrich N, Gong B, Patlas MN

pubmed logopapersMay 21 2025
Artificial intelligence (AI) is rapidly transforming radiology, with applications spanning disease detection, lesion segmentation, workflow optimization, and report generation. As these tools become more integrated into clinical practice, new concerns have emerged regarding their vulnerability to adversarial attacks. This review provides an in-depth overview of adversarial AI in radiology, a topic of growing relevance in both research and clinical domains. It begins by outlining the foundational concepts and model characteristics that make machine learning systems particularly susceptible to adversarial manipulation. A structured taxonomy of attack types is presented, including distinctions based on attacker knowledge, goals, timing, and computational frequency. The clinical implications of these attacks are then examined across key radiology tasks, with literature highlighting risks to disease classification, image segmentation and reconstruction, and report generation. Potential downstream consequences such as patient harm, operational disruption, and loss of trust are discussed. Current mitigation strategies are reviewed, spanning input-level defenses, model training modifications, and certified robustness approaches. In parallel, the role of broader lifecycle and safeguard strategies are considered. By consolidating current knowledge across technical and clinical domains, this review helps identify gaps, inform future research priorities, and guide the development of robust, trustworthy AI systems in radiology.

The Desmoid Dilemma: Challenges and Opportunities in Assessing Tumor Burden and Therapeutic Response.

Chang YC, Nixon B, Souza F, Cardoso FN, Dayan E, Geiger EJ, Rosenberg A, D'Amato G, Subhawong T

pubmed logopapersMay 21 2025
Desmoid tumors are rare, locally invasive soft-tissue tumors with unpredictable clinical behavior. Imaging plays a crucial role in their diagnosis, measurement of disease burden, and assessment of treatment response. However, desmoid tumors' unique imaging features present challenges to conventional imaging metrics. The heterogeneous nature of these tumors, with a variable composition (fibrous, myxoid, or cellular), complicates accurate delineation of tumor boundaries and volumetric assessment. Furthermore, desmoid tumors can demonstrate prolonged stability or spontaneous regression, and biologic quiescence is often manifested by collagenization rather than bulk size reduction, making traditional size-based response criteria, such as Response Evaluation Criteria in Solid Tumors (RECIST), suboptimal. To overcome these limitations, advanced imaging techniques offer promising opportunities. Functional and parametric imaging methods, such as diffusion-weighted MRI, dynamic contrast-enhanced MRI, and T2 relaxometry, can provide insights into tumor cellularity and maturation. Radiomics and artificial intelligence approaches may enhance quantitative analysis by extracting and correlating complex imaging features with biological behavior. Moreover, imaging biomarkers could facilitate earlier detection of treatment efficacy or resistance, enabling tailored therapy. By integrating advanced imaging into clinical practice, it may be possible to refine the evaluation of disease burden and treatment response, ultimately improving the management and outcomes of patients with desmoid tumors.

Exchange of Quantitative Computed Tomography Assessed Body Composition Data Using Fast Healthcare Interoperability Resources as a Necessary Step Toward Interoperable Integration of Opportunistic Screening Into Clinical Practice: Methodological Development Study.

Wen Y, Choo VY, Eil JH, Thun S, Pinto Dos Santos D, Kast J, Sigle S, Prokosch HU, Ovelgönne DL, Borys K, Kohnke J, Arzideh K, Winnekens P, Baldini G, Schmidt CS, Haubold J, Nensa F, Pelka O, Hosch R

pubmed logopapersMay 21 2025
Fast Healthcare Interoperability Resources (FHIR) is a widely used standard for storing and exchanging health care data. At the same time, image-based artificial intelligence (AI) models for quantifying relevant body structures and organs from routine computed tomography (CT)/magnetic resonance imaging scans have emerged. The missing link, simultaneously a needed step in advancing personalized medicine, is the incorporation of measurements delivered by AI models into an interoperable and standardized format. Incorporating image-based measurements and biomarkers into FHIR profiles can standardize data exchange, enabling timely, personalized treatment decisions and improving the precision and efficiency of patient care. This study aims to present the synergistic incorporation of CT-derived body organ and composition measurements with FHIR, delineating an initial paradigm for storing image-based biomarkers. This study integrated the results of the Body and Organ Analysis (BOA) model into FHIR profiles to enhance the interoperability of image-based biomarkers in radiology. The BOA model was selected as an exemplary AI model due to its ability to provide detailed body composition and organ measurements from CT scans. The FHIR profiles were developed based on 2 primary observation types: Body Composition Analysis (BCA Observation) for quantitative body composition metrics and Body Structure Observation for organ measurements. These profiles were structured to interoperate with a specially designed Diagnostic Report profile, which references the associated Imaging Study, ensuring a standardized linkage between image data and derived biomarkers. To ensure interoperability, all labels were mapped to SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) or RadLex terminologies using specific value sets. The profiles were developed using FHIR Shorthand (FSH) and SUSHI, enabling efficient definition and implementation guide generation, ensuring consistency and maintainability. In this study, 4 BOA profiles, namely, Body Composition Analysis Observation, Body Structure Volume Observation, Diagnostic Report, and Imaging Study, have been presented. These FHIR profiles, which cover 104 anatomical landmarks, 8 body regions, and 8 tissues, enable the interoperable usage of the results of AI segmentation models, providing a direct link between image studies, series, and measurements. The BOA profiles provide a foundational framework for integrating AI-derived imaging biomarkers into FHIR, bridging the gap between advanced imaging analytics and standardized health care data exchange. By enabling structured, interoperable representation of body composition and organ measurements, these profiles facilitate seamless integration into clinical and research workflows, supporting improved data accessibility and interoperability. Their adaptability allows for extension to other imaging modalities and AI models, fostering a more standardized and scalable approach to using imaging biomarkers in precision medicine. This work represents a step toward enhancing the integration of AI-driven insights into digital health ecosystems, ultimately contributing to more data-driven, personalized, and efficient patient care.

Neuroimaging Characterization of Acute Traumatic Brain Injury with Focus on Frontline Clinicians: Recommendations from the 2024 National Institute of Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Imaging Working Group.

Mac Donald CL, Yuh EL, Vande Vyvere T, Edlow BL, Li LM, Mayer AR, Mukherjee P, Newcombe VFJ, Wilde EA, Koerte IK, Yurgelun-Todd D, Wu YC, Duhaime AC, Awwad HO, Dams-O'Connor K, Doperalski A, Maas AIR, McCrea MA, Umoh N, Manley GT

pubmed logopapersMay 20 2025
Neuroimaging screening and surveillance is one of the first frontline diagnostic tools leveraged in the acute assessment (first 24 h postinjury) of patients suspected to have traumatic brain injury (TBI). While imaging, in particular computed tomography, is used almost universally in emergency departments worldwide to evaluate possible features of TBI, there is no currently agreed-upon reporting system, standard terminology, or framework to contextualize brain imaging findings with other available medical, psychosocial, and environmental data. In 2023, the NIH-National Institute of Neurological Disorders and Stroke convened six working groups of international experts in TBI to develop a new framework for nomenclature and classification. The goal of this effort was to propose a more granular system of injury classification that incorporates recent progress in imaging biomarkers, blood-based biomarkers, and injury and recovery modifiers to replace the commonly used Glasgow Coma Scale-based diagnosis groups of mild, moderate, and severe TBI, which have shown relatively poor diagnostic, prognostic, and therapeutic utility. Motivated by prior efforts to standardize the nomenclature for pathoanatomic imaging findings of TBI for research and clinical trials, along with more recent studies supporting the refinement of the originally proposed definitions, the Imaging Working Group sought to update and expand this application specifically for consideration of use in clinical practice. Here we report the recommendations of this working group to enable the translation of structured imaging common data elements to the standard of care. These leverage recent advances in imaging technology, electronic medical record (EMR) systems, and artificial intelligence (AI), along with input from key stakeholders, including patients with lived experience, caretakers, providers across medical disciplines, radiology industry partners, and policymakers. It was recommended that (1) there would be updates to the definitions of key imaging features used for this system of classification and that these should be further refined as new evidence of the underlying pathology driving the signal change is identified; (2) there would be an efficient, integrated tool embedded in the EMR imaging reporting system developed in collaboration with industry partners; (3) this would include AI-generated evidence-based feature clusters with diagnostic, prognostic, and therapeutic implications; and (4) a "patient translator" would be developed in parallel to assist patients and families in understanding these imaging features. In addition, important disclaimers would be provided regarding known limitations of current technology until such time as they are overcome, such as resolution and sequence parameter considerations. The end goal is a multifaceted TBI characterization model incorporating clinical, imaging, blood biomarker, and psychosocial and environmental modifiers to better serve patients not only acutely but also through the postinjury continuum in the days, months, and years that follow TBI.

AI-powered integration of multimodal imaging in precision medicine for neuropsychiatric disorders.

Huang W, Shu N

pubmed logopapersMay 20 2025
Neuropsychiatric disorders have complex pathological mechanism, pronounced clinical heterogeneity, and a prolonged preclinical phase, which presents a challenge for early diagnosis and development of precise intervention strategies. With the development of large-scale multimodal neuroimaging datasets and advancement of artificial intelligence (AI) algorithms, the integration of multimodal imaging with AI techniques has emerged as a pivotal avenue for early detection and tailoring individualized treatment for neuropsychiatric disorders. To support these advances, in this review, we outline multimodal neuroimaging techniques, AI methods, and strategies for multimodal data fusion. We highlight applications of multimodal AI based on neuroimaging data in precision medicine for neuropsychiatric disorders, discussing challenges in clinical adoption, their emerging solutions, and future directions.

A Comprehensive Review of Techniques, Algorithms, Advancements, Challenges, and Clinical Applications of Multi-modal Medical Image Fusion for Improved Diagnosis

Muhammad Zubair, Muzammil Hussai, Mousa Ahmad Al-Bashrawi, Malika Bendechache, Muhammad Owais

arxiv logopreprintMay 18 2025
Multi-modal medical image fusion (MMIF) is increasingly recognized as an essential technique for enhancing diagnostic precision and facilitating effective clinical decision-making within computer-aided diagnosis systems. MMIF combines data from X-ray, MRI, CT, PET, SPECT, and ultrasound to create detailed, clinically useful images of patient anatomy and pathology. These integrated representations significantly advance diagnostic accuracy, lesion detection, and segmentation. This comprehensive review meticulously surveys the evolution, methodologies, algorithms, current advancements, and clinical applications of MMIF. We present a critical comparative analysis of traditional fusion approaches, including pixel-, feature-, and decision-level methods, and delves into recent advancements driven by deep learning, generative models, and transformer-based architectures. A critical comparative analysis is presented between these conventional methods and contemporary techniques, highlighting differences in robustness, computational efficiency, and interpretability. The article addresses extensive clinical applications across oncology, neurology, and cardiology, demonstrating MMIF's vital role in precision medicine through improved patient-specific therapeutic outcomes. Moreover, the review thoroughly investigates the persistent challenges affecting MMIF's broad adoption, including issues related to data privacy, heterogeneity, computational complexity, interpretability of AI-driven algorithms, and integration within clinical workflows. It also identifies significant future research avenues, such as the integration of explainable AI, adoption of privacy-preserving federated learning frameworks, development of real-time fusion systems, and standardization efforts for regulatory compliance.

Breast Arterial Calcifications on Mammography: A Review of the Literature.

Rossi J, Cho L, Newell MS, Venta LA, Montgomery GH, Destounis SV, Moy L, Brem RF, Parghi C, Margolies LR

pubmed logopapersMay 17 2025
Identifying systemic disease with medical imaging studies may improve population health outcomes. Although the pathogenesis of peripheral arterial calcification and coronary artery calcification differ, breast arterial calcification (BAC) on mammography is associated with cardiovascular disease (CVD), a leading cause of death in women. While professional society guidelines on the reporting or management of BAC have not yet been established, and assessment and quantification methods are not yet standardized, the value of reporting BAC is being considered internationally as a possible indicator of subclinical CVD. Furthermore, artificial intelligence (AI) models are being developed to identify and quantify BAC on mammography, as well as to predict the risk of CVD. This review outlines studies evaluating the association of BAC and CVD, introduces the role of preventative cardiology in clinical management, discusses reasons to consider reporting BAC, acknowledges current knowledge gaps and barriers to assessing and reporting calcifications, and provides examples of how AI can be utilized to measure BAC and contribute to cardiovascular risk assessment. Ultimately, reporting BAC on mammography might facilitate earlier mitigation of cardiovascular risk factors in asymptomatic women.
Page 6 of 987 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.