Sort by:
Page 59 of 100991 results

MCAUnet: a deep learning framework for automated quantification of body composition in liver cirrhosis patients.

Wang J, Xia S, Zhang J, Wang X, Zhao C, Zheng W

pubmed logopapersJul 1 2025
Traditional methods for measuring body composition in CT scans rely on labor-intensive manual delineation, which is time-consuming and imprecise. This study proposes a deep learning-driven framework, MCAUnet, for accurate and automated quantification of body composition and comprehensive survival analysis in cirrhotic patients. A total of 11,362 L3-level lumbar CT slices were collected to train and validate the segmentation model. The proposed model incorporates an attention mechanism from the channel perspective, enabling adaptive fusion of critical channel features. Experimental results demonstrate that our approach achieves an average Dice coefficient of 0.952 for visceral fat segmentation, significantly outperforming existing segmentation models. Based on the quantified body composition, sarcopenic visceral obesity (SVO) was defined, and an association model was developed to analyze the relationship between SVO and survival rates in cirrhotic patients. The study revealed that 3-year and 5-year survival rates of SVO patients were significantly lower than those of non-SVO patients. Regression analysis further validated the strong correlation between SVO and mortality in cirrhotic patients. In summary, the MCAUnet framework provides a novel, precise, and automated tool for body composition quantification and survival analysis in cirrhotic patients, offering potential support for clinical decision-making and personalized treatment strategies.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer.

Zhao T, He J, Zhang L, Li H, Duan Q

pubmed logopapersJul 1 2025
To construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images. A retrospective analysis was conducted involving 201 bladder cancer patients with definite pathological grading results after surgical excision at the organization between January 2019 and June 2023. The cohort was classified into a test set of 81 cases and a training set of 120 cases. Hand-crafted radiomics (HCR) and features derived from deep-learning (DL) were obtained from computed tomography (CT) images. The research builds a prediction model using 12 machine-learning classifiers, which integrate HCR, DL features, and clinical data. Model performance was estimated utilizing decision-curve analysis (DCA), the area under the curve (AUC), and calibration curves. Among the classifiers tested, the logistic regression model that combined DL and HCR characteristics demonstrated the finest performance. The AUC values were 0.912 (training set) and 0.777 (test set). The AUC values of clinical model achieved 0.850 (training set) and 0.804 (test set). The AUC values of the combined model were 0.933 (training set) and 0.824 (test set), outperforming both the clinical and HCR-only models. The CT-based combined model demonstrated considerable diagnostic capability in differentiating high-grade from low-grade bladder cancer, serving as a valuable noninvasive instrument for preoperative pathological evaluation.

Accuracy of machine learning models for pre-diagnosis and diagnosis of pancreatic ductal adenocarcinoma in contrast-CT images: a systematic review and meta-analysis.

Lopes Costa GL, Tasca Petroski G, Machado LG, Eulalio Santos B, de Oliveira Ramos F, Feuerschuette Neto LM, De Luca Canto G

pubmed logopapersJul 1 2025
To evaluate the diagnostic ability and methodological quality of ML models in detecting Pancreatic Ductal Adenocarcinoma (PDAC) in Contrast CT images. Included studies assessed adults diagnosed with PDAC, confirmed by histopathology. Metrics of tests were interpreted by ML algorithms. Studies provided data on sensitivity and specificity. Studies that did not meet the inclusion criteria, segmentation-focused studies, multiple classifiers or non-diagnostic studies were excluded. PubMed, Cochrane Central Register of Controlled Trials, and Embase were searched without restrictions. Risk of bias was assessed using QUADAS-2, methodological quality was evaluated using Radiomics Quality Score (RQS) and a Checklist for AI in Medical Imaging (CLAIM). Bivariate random-effects models were used for meta-analysis of sensitivity and specificity, I<sup>2</sup> values and subgroup analysis used to assess heterogeneity. Nine studies were included and 12,788 participants were evaluated, of which 3,997 were included in the meta-analysis. AI models based on CT scans showed an accuracy of 88.7% (IC 95%, 87.7%-89.7%), sensitivity of 87.9% (95% CI, 82.9%-91.6%), and specificity of 92.2% (95% CI, 86.8%-95.5%). The average score of six radiomics studies was 17.83 RQS points. Nine ML methods had an average CLAIM score of 30.55 points. Our study is the first to quantitatively interpret various independent research, offering insights for clinical application. Despite favorable sensitivity and specificity results, the studies were of low quality, limiting definitive conclusions. Further research is necessary to validate these models before widespread adoption.

Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

Famularo S, Maino C, Milana F, Ardito F, Rompianesi G, Ciulli C, Conci S, Gallotti A, La Barba G, Romano M, De Angelis M, Patauner S, Penzo C, De Rose AM, Marescaux J, Diana M, Ippolito D, Frena A, Boccia L, Zanus G, Ercolani G, Maestri M, Grazi GL, Ruzzenente A, Romano F, Troisi RI, Giuliante F, Donadon M, Torzilli G

pubmed logopapersJul 1 2025
No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms. Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM). Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %). The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.

Image quality assessment of artificial intelligence iterative reconstruction for low dose unenhanced abdomen: comparison with hybrid iterative reconstruction.

Qi H, Cui D, Xu S, Li W, Zeng Q

pubmed logopapersJul 1 2025
To assess the impact of artificial intelligence iterative reconstruction algorithms (AIIR) on image quality with phantom and clinical studies. The phantom images were reconstructed with the hybrid iterative algorithm (HIR: Karl 3D-3, 5, 7, 9) and AIIR (grades 1-5) algorithm. Noise power spectra (NPS), task transfer functions (TTF) were measured, and additionally sharpness was assessed using a "blur metric" procedure. Sixty-two consecutive patients underwent standard-dose and low-dose unenhanced abdominal computed tomography (CT) scans, i.e., SDCT and LDCT groups, respectively. The SDCT images reconstructed using the Karl 3D-5, and the LDCT images reconstructed using the Karl 3D-5 and the AIIR-3 and 5, respectively. CT values, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed for hepatic parenchyma and paravertebral muscles. Images were independently evaluated by two radiologists for image-quality, noise, sharpness, and lesion diagnostic confidence. In the phantom study, AIIR algorithm provided higher TTF<sub>50%</sub> and NPS average spatial frequency compared to HIR. In the clinical study, there was no statistically significant difference in CT values among the four reconstruction images (p > 0.05). The LDCT group AIIR-3 obtained the lowest SD values and the highest mean CNR and SNR values compared to the other three groups (p < 0.05). For qualitative assessment, the image subjective characteristic scores of AIIR-5 in the LDCT group, compared with the SDCT group, were not statistically significant (p > 0.05). AIIR reduces radiation dose levels by approximately 78% and still maintains the image quality of unenhanced abdominal CT compared to HIR with SDCT. NCT06142539.

Feasibility/clinical utility of half-Fourier single-shot turbo spin echo imaging combined with deep learning reconstruction in gynecologic magnetic resonance imaging.

Kirita M, Himoto Y, Kurata Y, Kido A, Fujimoto K, Abe H, Matsumoto Y, Harada K, Morita S, Yamaguchi K, Nickel D, Mandai M, Nakamoto Y

pubmed logopapersJul 1 2025
When antispasmodics are unavailable, the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER; called BLADE by Siemens Healthineers) or half Fourier single-shot turbo spin echo (HASTE) is clinically used in gynecologic MRI. However, their imaging qualities are limited compared to Turbo Spin Echo (TSE) with antispasmodics. Even with antispasmodics, TSE can be artifact-affected, necessitating a rapid backup sequence. This study aimed to investigate the utility of HASTE with deep learning reconstruction and variable flip angle evolution (iHASTE) compared to conventional sequences with and without antispasmodics. This retrospective study included MRI scans without antispasmodics for 79 patients who underwent iHASTE, HASTE, and BLADE and MRI scans with antispasmodics for 79 case-control matched patients who underwent TSE. Three radiologists qualitatively evaluated image quality, robustness to artifacts, tissue contrast, and uterine lesion margins. Tissue contrast was also quantitatively evaluated. Quantitative evaluations revealed that iHASTE exhibited significantly superior tissue contrast to HASTE and BLADE. Qualitative evaluations indicated that iHASTE outperformed HASTE in overall quality. Two of three radiologists judged iHASTE to be significantly superior to BLADE, while two of three judged TSE to be significantly superior to iHASTE. iHASTE demonstrated greater robustness to artifacts than both BLADE and TSE. Lesion margins in iHASTE had lower scores than BLADE and TSE. iHASTE is a viable clinical option in patients undergoing gynecologic MRI with anti-spasmodics. iHASTE may also be considered as a useful add-on sequence in patients undergoing MRI with antispasmodics.

Characterization of hepatocellular carcinoma with CT with deep learning reconstruction compared with iterative reconstruction and 3-Tesla MRI.

Malthiery C, Hossu G, Ayav A, Laurent V

pubmed logopapersJul 1 2025
This study compared the characteristics of lesions suspicious for hepatocellular carcinoma (HCC) and their LI-RADS classifications in adaptive statistical iterative reconstruction (ASIR) and deep learning reconstruction (DLR) to those of MR images, along with radiologist confidence. This prospective single-center trial included patients who underwent four-phase liver CT and multiphasic contrast-enhanced MRI within 7 days from February to August 2023. The lesion characteristics, LI-RADS classifications and confidence scores according to two radiologists on the ASIR, DLR and MRI techniques were compared. If the patient had at least one lesion, he was included in the HCC group, otherwise in the non-HCC group. MRI being the technique with the best sensitivity, concordance of lesions characteristics and LI-RADS classifications were calculated by weighted kappa between the ASIR and MRI and between the DLR and MRI. The confidence scores are expressed as the means and standard deviations. Eighty-nine patients were enrolled, 52 in the HCC group (67 years ± 9 [mean ± SD], 46 men) and 37 in the non-HCC group (68 years ± 9, 33 men). The concordance coefficient between the LI-RADS classification by ASIR and MRI was 0.64 [0.52; 0.76], showing good agreement, that by DLR and MRI was 0.83 [0.73; 0.92], showing excellent agreement. The diagnostic confidence in ASIR was 3.31 ± 0.95 (mean ± SD) and 3.0 ± 1.11, that in the DLR was 3.9 ± 0.88 and 4.11 ± 0.75, that in the MRI was 4.46 ± 0.80 and 4.57 ± 0.80. DLR provided excellent LI-RADS classification concordance with MRI, whereas ASIR provided good concordance. The radiologists' confidence was greater in the DLR than in the ASIR but remained highest in the MR group. Question Does the use of deep learning reconstructions (DLR) improve LI-RADS classification of suspicious hepatocellular carcinoma lesions compared to adaptive statistical iterative reconstructions (ASIR)? Findings DLR demonstrated superior concordance of LI-RADS classification with MRI compared to ASIR. It also provided greater diagnostic confidence than ASIR. Clinical relevance The use of DLR enhances radiologists' ability to visualize and characterize lesions suspected of being HCC, as well as their LI-RADS classification. Moreover, it also boosts their confidence in interpreting these images.

Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI.

Ali R, Li H, Zhang H, Pan W, Reeder SB, Harris D, Masch W, Aslam A, Shanbhogue K, Bernieh A, Ranganathan S, Parikh N, Dillman JR, He L

pubmed logopapersJul 1 2025
Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis. To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients. We identified pediatric and adult patients with known or suspected CLD from four institutions, who underwent clinical MRI with MRE from 2011 to 2022. We used T1w and T2w data to train DL models for liver stiffness classification. Patients were categorized into two groups for binary classification using liver stiffness thresholds (≥ 2.5 kPa, ≥ 3.0 kPa, ≥ 3.5 kPa, ≥ 4 kPa, or ≥ 5 kPa), reflecting various degrees of liver stiffening. We identified 4695 MRI examinations from 4295 patients (mean ± SD age, 47.6 ± 18.7 years; 428 (10.0%) pediatric; 2159 males [50.2%]). With a primary liver stiffness threshold of 3.0 kPa, our model correctly classified patients into no/minimal (< 3.0 kPa) vs moderate/severe (≥ 3.0 kPa) liver stiffness with AUROCs of 0.83 (95% CI: 0.82, 0.84) in our internal multi-site cross-validation (CV) experiment, 0.82 (95% CI: 0.80, 0.84) in our temporal hold-out validation experiment, and 0.79 (95% CI: 0.75, 0.81) in our external leave-one-site-out CV experiment. The developed model is publicly available ( https://github.com/almahdir1/Multi-channel-DeepLiverNet2.0.git ). Our DL models exhibited reasonable diagnostic performance for categorical classification of liver stiffness on a large diverse dataset using T1w and T2w MRI data. Question Can DL models accurately predict liver stiffness using routine clinical biparametric MRI in pediatric and adult patients with CLD? Findings DeepLiverNet2.0 used biparametric MRI data to classify liver stiffness, achieving AUROCs of 0.83, 0.82, and 0.79 for multi-site CV, hold-out validation, and external CV. Clinical relevance Our DeepLiverNet2.0 AI model can categorically classify the severity of liver stiffening using anatomic biparametric MR images in children and young adults. Model refinements and incorporation of clinical features may decrease the need for MRE.

Longitudinal twin growth discordance patterns and adverse perinatal outcomes.

Prasad S, Ayhan I, Mohammed D, Kalafat E, Khalil A

pubmed logopapersJul 1 2025
Growth discordance in twin pregnancies is associated with increased perinatal morbidity and mortality, yet the patterns of discordance progression and the utility of Doppler assessments remain underinvestigated. The objective of this study was to conduct a longitudinal assessment of intertwin growth and Doppler discordance to identify possible distinct patterns and to investigate the predictive value of longitudinal discordance patterns for adverse perinatal outcomes in twin pregnancies. This retrospective cohort study included twin pregnancies followed and delivered at a tertiary hospital in London (United Kingdom) between 2010 and 2023. We included pregnancies with at least 3 ultrasound assessments after 18 weeks and delivery beyond 34 weeks' gestation. Monoamniotic twin pregnancies, pregnancies with twin-to-twin transfusion syndrome, genetic or structural abnormalities, or incomplete data were excluded. Data on chorionicity, biometry, Doppler indices, maternal characteristics and obstetrics, and neonatal outcomes were extracted from electronic records. Doppler assessment included velocimetry of the umbilical artery, middle cerebral artery, and cerebroplacental ratio. Intertwin growth discordance was calculated for each scan. The primary outcome was a composite of perinatal mortality and neonatal morbidity. Statistical analysis involved multilevel mixed effects regression models and unsupervised machine learning algorithms, specifically k-means clustering, to identify distinct patterns of intertwin discordance and their predictive value. Predictive models were compared using the area under the receiver operating characteristic curve, calibration intercept, and slope, validated with repeated cross-validation. Analyses were performed using R, with significance set at P<.05. Data from 823 twin pregnancies (647 dichorionic, 176 monochorionic) were analyzed. Five distinct patterns of intertwin growth discordance were identified using an unsupervised learning algorithm that clustered twin pairs based on the progression and patterns of discordance over gestation: low-stable (n=204, 24.8%), mild-decreasing (n=171, 20.8%), low-increasing (n=173, 21.0%), mild-increasing (n=189, 23.0%), and high-stable (n=86, 10.4%). In the high-stable cluster, the rates of perinatal morbidity (46.5%, 40/86) and mortality (9.3%, 8/86) were significantly higher compared to the low-stable (reference) cluster (P<.001). High-stable growth pattern was also associated with a significantly higher risk of composite adverse perinatal outcomes (odds ratio: 70.19, 95% confidence interval: 24.18-299.03, P<.001; adjusted odds ratio: 76.44, 95% confidence interval: 25.39-333.02, P<.001). The model integrating discordance pattern with cerebroplacental ratio discordance at the last ultrasound before delivery demonstrated superior predictive accuracy, evidenced by the highest area under the receiver operating characteristic curve of 0.802 (95% confidence interval: 0.712-0.892, P<.001), compared to only discordance patterns (area under the receiver operating characteristic curve: 0.785, 95% confidence interval: 0.697-0.873), intertwin weight discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.677, 95% confidence interval: 0.545-0.809), combination of single measurements of estimated fetal weight and cardiopulmonary resuscitation discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.702, 95% confidence interval: 0.586-0.818), and single measurement of cardiopulmonary resuscitation discordance only at the last ultrasound (area under the receiver operating characteristic curve: 0.633, 95% confidence interval: 0.515-0.751). Using an unsupervised machine learning algorithm, we identified 5 distinct trajectories of intertwin fetal growth discordance. Consistent high discordance is associated with increased rates of adverse perinatal outcomes, with a dose-response relationship. Moreover, a predictive model integrating discordance trajectory and cardiopulmonary resuscitation discordance at the last visit demonstrated superior predictive accuracy for the prediction of composite adverse perinatal outcomes, compared to either of these measurements alone or a single value of estimated fetal weight discordance at the last ultrasound prior to delivery.
Page 59 of 100991 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.