Image quality assessment of artificial intelligence iterative reconstruction for low dose unenhanced abdomen: comparison with hybrid iterative reconstruction.

Authors

Qi H,Cui D,Xu S,Li W,Zeng Q

Affiliations (5)

  • Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China.
  • Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
  • United Imaging Healthcare (China), Shanghai, China.
  • Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China. [email protected].
  • Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China. [email protected].

Abstract

To assess the impact of artificial intelligence iterative reconstruction algorithms (AIIR) on image quality with phantom and clinical studies. The phantom images were reconstructed with the hybrid iterative algorithm (HIR: Karl 3D-3, 5, 7, 9) and AIIR (grades 1-5) algorithm. Noise power spectra (NPS), task transfer functions (TTF) were measured, and additionally sharpness was assessed using a "blur metric" procedure. Sixty-two consecutive patients underwent standard-dose and low-dose unenhanced abdominal computed tomography (CT) scans, i.e., SDCT and LDCT groups, respectively. The SDCT images reconstructed using the Karl 3D-5, and the LDCT images reconstructed using the Karl 3D-5 and the AIIR-3 and 5, respectively. CT values, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed for hepatic parenchyma and paravertebral muscles. Images were independently evaluated by two radiologists for image-quality, noise, sharpness, and lesion diagnostic confidence. In the phantom study, AIIR algorithm provided higher TTF<sub>50%</sub> and NPS average spatial frequency compared to HIR. In the clinical study, there was no statistically significant difference in CT values among the four reconstruction images (p > 0.05). The LDCT group AIIR-3 obtained the lowest SD values and the highest mean CNR and SNR values compared to the other three groups (p < 0.05). For qualitative assessment, the image subjective characteristic scores of AIIR-5 in the LDCT group, compared with the SDCT group, were not statistically significant (p > 0.05). AIIR reduces radiation dose levels by approximately 78% and still maintains the image quality of unenhanced abdominal CT compared to HIR with SDCT. NCT06142539.

Topics

Tomography, X-Ray ComputedRadiographic Image Interpretation, Computer-AssistedRadiography, AbdominalArtificial IntelligenceJournal ArticleComparative Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.