Sort by:
Page 53 of 94933 results

CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment.

Sasaki T, Kuno H, Nomura K, Muramatsu Y, Aokage K, Samejima J, Taki T, Goto E, Wakabayashi M, Furuya H, Taguchi H, Kobayashi T

pubmed logopapersJul 1 2025
This is a preliminary analysis of one of the secondary endpoints in the prospective study cohort. The aim of this study is to assess the image quality and diagnostic confidence for lung cancer of CT images generated by using cadmium-zinc-telluride (CZT)-based photon-counting-detector-CT (PCD-CT) and comparing these super-high-resolution (SHR) images with conventional normal-resolution (NR) CT images. Twenty-five patients (median age 75 years, interquartile range 66-78 years, 18 men and 7 women) with 29 lung nodules overall (including two patients with 4 and 2 nodules, respectively) were enrolled to undergo PCD-CT. Three types of images were reconstructed: a 512 × 512 matrix with adaptive iterative dose reduction 3D (AIDR 3D) as the NR<sub>AIDR3D</sub> image, a 1024 × 1024 matrix with AIDR 3D as the SHR<sub>AIDR3D</sub> image, and a 1024 × 1024 matrix with deep-learning reconstruction (DLR) as the SHR<sub>DLR</sub> image. For qualitative analysis, two radiologists evaluated the matched reconstructed series twice (NR<sub>AIDR3D</sub> vs. SHR<sub>AIDR3D</sub> and SHR<sub>AIDR3D</sub> vs. SHR<sub>DLR</sub>) and scored the presence of imaging findings, such as spiculation, lobulation, appearance of ground-glass opacity or air bronchiologram, image quality, and diagnostic confidence, using a 5-point Likert scale. For quantitative analysis, contrast-to-noise ratios (CNRs) of the three images were compared. In the qualitative analysis, compared to NR<sub>AIDR3D</sub>, SHR<sub>AIDR3D</sub> yielded higher image quality and diagnostic confidence, except for image noise (all P < 0.01). In comparison with SHR<sub>AIDR3D</sub>, SHR<sub>DLR</sub> yielded higher image quality and diagnostic confidence (all P < 0.01). In the quantitative analysis, CNRs in the modified NR<sub>AIDR3D</sub> and SHR<sub>DLR</sub> groups were higher than those in the SHR<sub>AIDR3D</sub> group (P = 0.003, <0.001, respectively). In PCD-CT, SHR<sub>DLR</sub> images provided the highest image quality and diagnostic confidence for lung tumor evaluation, followed by SHR<sub>AIDR3D</sub> and NR<sub>AIDR3D</sub> images. DLR demonstrated superior noise reduction compared to other reconstruction methods.

Interstitial-guided automatic clinical tumor volume segmentation network for cervical cancer brachytherapy.

Tan S, He J, Cui M, Gao Y, Sun D, Xie Y, Cai J, Zaki N, Qin W

pubmed logopapersJul 1 2025
Automatic clinical tumor volume (CTV) delineation is pivotal to improving outcomes for interstitial brachytherapy cervical cancer. However, the prominent differences in gray values due to the interstitial needles bring great challenges on deep learning-based segmentation model. In this study, we proposed a novel interstitial-guided segmentation network termed advance reverse guided network (ARGNet) for cervical tumor segmentation with interstitial brachytherapy. Firstly, the location information of interstitial needles was integrated into the deep learning framework via multi-task by a cross-stitch way to share encoder feature learning. Secondly, a spatial reverse attention mechanism is introduced to mitigate the distraction characteristic of needles on tumor segmentation. Furthermore, an uncertainty area module is embedded between the skip connections and the encoder of the tumor segmentation task, which is to enhance the model's capability in discerning ambiguous boundaries between the tumor and the surrounding tissue. Comprehensive experiments were conducted retrospectively on 191 CT scans under multi-course interstitial brachytherapy. The experiment results demonstrated that the characteristics of interstitial needles play a role in enhancing the segmentation, achieving the state-of-the-art performance, which is anticipated to be beneficial in radiotherapy planning.

CQENet: A segmentation model for nasopharyngeal carcinoma based on confidence quantitative evaluation.

Qi Y, Wei L, Yang J, Xu J, Wang H, Yu Q, Shen G, Cao Y

pubmed logopapersJul 1 2025
Accurate segmentation of the tumor regions of nasopharyngeal carcinoma (NPC) is of significant importance for radiotherapy of NPC. However, the precision of existing automatic segmentation methods for NPC remains inadequate, primarily manifested in the difficulty of tumor localization and the challenges in delineating blurred boundaries. Additionally, the black-box nature of deep learning models leads to insufficient quantification of the confidence in the results, preventing users from directly understanding the model's confidence in its predictions, which severely impacts the clinical application of deep learning models. This paper proposes an automatic segmentation model for NPC based on confidence quantitative evaluation (CQENet). To address the issue of insufficient confidence quantification in NPC segmentation results, we introduce a confidence assessment module (CAM) that enables the model to output not only the segmentation results but also the confidence in those results, aiding users in understanding the uncertainty risks associated with model outputs. To address the difficulty in localizing the position and extent of tumors, we propose a tumor feature adjustment module (FAM) for precise tumor localization and extent determination. To address the challenge of delineating blurred tumor boundaries, we introduce a variance attention mechanism (VAM) to assist in edge delineation during fine segmentation. We conducted experiments on a multicenter NPC dataset, validating that our proposed method is effective and superior to existing state-of-the-art models, possessing considerable clinical application value.

Liver lesion segmentation in ultrasound: A benchmark and a baseline network.

Li J, Zhu L, Shen G, Zhao B, Hu Y, Zhang H, Wang W, Wang Q

pubmed logopapersJul 1 2025
Accurate liver lesion segmentation in ultrasound is a challenging task due to high speckle noise, ambiguous lesion boundaries, and inhomogeneous intensity distribution inside the lesion regions. This work first collected and annotated a dataset for liver lesion segmentation in ultrasound. In this paper, we propose a novel convolutional neural network to learn dual self-attentive transformer features for boosting liver lesion segmentation by leveraging the complementary information among non-local features encoded at different layers of the transformer architecture. To do so, we devise a dual self-attention refinement (DSR) module to synergistically utilize self-attention and reverse self-attention mechanisms to extract complementary lesion characteristics between cascaded multi-layer feature maps, assisting the model to produce more accurate segmentation results. Moreover, we propose a False-Positive-Negative loss to enable our network to further suppress the non-liver-lesion noise at shallow transformer layers and enhance more target liver lesion details into CNN features at deep transformer layers. Experimental results show that our network outperforms state-of-the-art methods quantitatively and qualitatively.

The impact of multi-modality fusion and deep learning on adult age estimation based on bone mineral density.

Cao Y, Zhang J, Ma Y, Zhang S, Li C, Liu S, Chen F, Huang P

pubmed logopapersJul 1 2025
Age estimation, especially in adults, presents substantial challenges in different contexts ranging from forensic to clinical applications. Bone mineral density (BMD), with its distinct age-related variations, has emerged as a critical marker in this domain. This study aims to enhance chronological age estimation accuracy using deep learning (DL) incorporating a multi-modality fusion strategy based on BMD. We conducted a retrospective analysis of 4296 CT scans from a Chinese population, covering August 2015 to November 2022, encompassing lumbar, femur, and pubis modalities. Our DL approach, integrating multi-modality fusion, was applied to predict chronological age automatically. The model's performance was evaluated using an internal real-world clinical cohort of 644 scans (December 2022 to May 2023) and an external cadaver validation cohort of 351 scans. In single-modality assessments, the lumbar modality excelled. However, multi-modality models demonstrated superior performance, evidenced by lower mean absolute errors (MAEs) and higher Pearson's R² values. The optimal multi-modality model exhibited outstanding R² values of 0.89 overall, 0.88 in females, 0.90 in males, with the MAEs of 4.05 overall, 3.69 in females, 4.33 in males in the internal validation cohort. In the external cadaver validation, the model maintained favourable R² values (0.84 overall, 0.89 in females, 0.82 in males) and MAEs (5.01 overall, 4.71 in females, 5.09 in males), highlighting its generalizability across diverse scenarios. The integration of multi-modalities fusion with DL significantly refines the accuracy of adult age estimation based on BMD. The AI-based system that effectively combines multi-modalities BMD data, presenting a robust and innovative tool for accurate AAE, poised to significantly improve both geriatric diagnostics and forensic investigations.

Data-efficient generalization of AI transformers for noise reduction in ultra-fast lung PET scans.

Wang J, Zhang X, Miao Y, Xue S, Zhang Y, Shi K, Guo R, Li B, Zheng G

pubmed logopapersJul 1 2025
Respiratory motion during PET acquisition may produce lesion blurring. Ultra-fast 20-second breath-hold (U2BH) PET reduces respiratory motion artifacts, but the shortened scanning time increases statistical noise and may affect diagnostic quality. This study aims to denoise the U2BH PET images using a deep learning (DL)-based method. The study was conducted on two datasets collected from five scanners where the first dataset included 1272 retrospectively collected full-time PET data while the second dataset contained 46 prospectively collected U2BH and the corresponding full-time PET/CT images. A robust and data-efficient DL method called mask vision transformer (Mask-ViT) was proposed which, after fine-tuned on a limited number of training data from a target scanner, was directly applied to unseen testing data from new scanners. The performance of Mask-ViT was compared with state-of-the-art DL methods including U-Net and C-Gan taking the full-time PET images as the reference. Statistical analysis on image quality metrics were carried out with Wilcoxon signed-rank test. For clinical evaluation, two readers scored image quality on a 5-point scale (5 = excellent) and provided a binary assessment for diagnostic quality evaluation. The U2BH PET images denoised by Mask-ViT showed statistically significant improvement over U-Net and C-Gan on image quality metrics (p < 0.05). For clinical evaluation, Mask-ViT exhibited a lesion detection accuracy of 91.3%, 90.4% and 91.7%, when it was evaluated on three different scanners. Mask-ViT can effectively enhance the quality of the U2BH PET images in a data-efficient generalization setup. The denoised images meet clinical diagnostic requirements of lesion detectability.

Dual-type deep learning-based image reconstruction for advanced denoising and super-resolution processing in head and neck T2-weighted imaging.

Fujima N, Shimizu Y, Ikebe Y, Kameda H, Harada T, Tsushima N, Kano S, Homma A, Kwon J, Yoneyama M, Kudo K

pubmed logopapersJul 1 2025
To assess the utility of dual-type deep learning (DL)-based image reconstruction with DL-based image denoising and super-resolution processing by comparing images reconstructed with the conventional method in head and neck fat-suppressed (Fs) T2-weighted imaging (T2WI). We retrospectively analyzed the cases of 43 patients who underwent head/neck Fs-T2WI for the assessment of their head and neck lesions. All patients underwent two sets of Fs-T2WI scans with conventional- and DL-based reconstruction. The Fs-T2WI with DL-based reconstruction was acquired based on a 30% reduction of its spatial resolution in both the x- and y-axes with a shortened scan time. Qualitative and quantitative assessments were performed with both the conventional method- and DL-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, visibility of anatomical structures, degree of artifact(s), lesion conspicuity, and lesion edge sharpness based on five-point grading. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the lesion and the contrast-to-noise ratio (CNR) between the lesion and the adjacent or nearest muscle. In the qualitative analysis, significant differences were observed between the Fs-T2WI with the conventional- and DL-based reconstruction in all of the evaluation items except the degree of the artifact(s) (p < 0.001). In the quantitative analysis, significant differences were observed in the SNR between the Fs-T2WI with conventional- (21.4 ± 14.7) and DL-based reconstructions (26.2 ± 13.5) (p < 0.001). In the CNR assessment, the CNR between the lesion and adjacent or nearest muscle in the DL-based Fs-T2WI (16.8 ± 11.6) was significantly higher than that in the conventional Fs-T2WI (14.2 ± 12.9) (p < 0.001). Dual-type DL-based image reconstruction by an effective denoising and super-resolution process successfully provided high image quality in head and neck Fs-T2WI with a shortened scan time compared to the conventional imaging method.

Measuring kidney stone volume - practical considerations and current evidence from the EAU endourology section.

Grossmann NC, Panthier F, Afferi L, Kallidonis P, Somani BK

pubmed logopapersJul 1 2025
This narrative review provides an overview of the use, differences, and clinical impact of current methods for kidney stone volume assessment. The different approaches to volume measurement are based on noncontrast computed tomography (NCCT). While volume measurement using formulas is sufficient for smaller stones, it tends to overestimate volume for larger or irregularly shaped calculi. In contrast, software-based segmentation significantly improves accuracy and reproducibility, and artificial intelligence based volumetry additionally shows excellent agreement with reference standards while reducing observer variability and measurement time. Moreover, specific CT preparation protocols may further enhance image quality and thus improve measurement accuracy. Clinically, stone volume has proven to be a superior predictor of stone-related events during follow-up, spontaneous stone passage under conservative management, and stone-free rates after shockwave lithotripsy (SWL) and ureteroscopy (URS) compared to linear measurements. Although manual measurement remains practical, its accuracy diminishes for complex or larger stones. Software-based segmentation and volumetry offer higher precision and efficiency but require established standards and broader access to dedicated software for routine clinical use.

Prediction of adverse pathology in prostate cancer using a multimodal deep learning approach based on [<sup>18</sup>F]PSMA-1007 PET/CT and multiparametric MRI.

Lin H, Yao F, Yi X, Yuan Y, Xu J, Chen L, Wang H, Zhuang Y, Lin Q, Xue Y, Yang Y, Pan Z

pubmed logopapersJul 1 2025
Accurate prediction of adverse pathology (AP) in prostate cancer (PCa) patients is crucial for formulating effective treatment strategies. This study aims to develop and evaluate a multimodal deep learning model based on [<sup>18</sup>F]PSMA-1007 PET/CT and multiparametric MRI (mpMRI) to predict the presence of AP, and investigate whether the model that integrates [<sup>18</sup>F]PSMA-1007 PET/CT and mpMRI outperforms the individual PET/CT or mpMRI models in predicting AP. 341 PCa patients who underwent radical prostatectomy (RP) with mpMRI and PET/CT scans were retrospectively analyzed. We generated deep learning signature from mpMRI and PET/CT with a multimodal deep learning model (MPC) based on convolutional neural networks and transformer, which was subsequently incorporated with clinical characteristics to construct an integrated model (MPCC). These models were compared with clinical models and single mpMRI or PET/CT models. The MPCC model showed the best performance in predicting AP (AUC, 0.955 [95% CI: 0.932-0.975]), which is higher than MPC model (AUC, 0.930 [95% CI: 0.901-0.955]). The performance of the MPC model is better than that of single PET/CT (AUC, 0.813 [95% CI: 0.780-0.845]) or mpMRI (AUC, 0.865 [95% CI: 0.829-0.901]). Additionally, MPCC model is also effective in predicting single adverse pathological features. The deep learning model that integrates mpMRI and [<sup>18</sup>F]PSMA-1007 PET/CT enhances the predictive capabilities for the presence of AP in PCa patients. This improvement aids physicians in making informed preoperative decisions, ultimately enhancing patient prognosis.

Diffusion-driven multi-modality medical image fusion.

Qu J, Huang D, Shi Y, Liu J, Tang W

pubmed logopapersJul 1 2025
Multi-modality medical image fusion (MMIF) technology utilizes the complementarity of different modalities to provide more comprehensive diagnostic insights for clinical practice. Existing deep learning-based methods often focus on extracting the primary information from individual modalities while ignoring the correlation of information distribution across different modalities, which leads to insufficient fusion of image details and color information. To address this problem, a diffusion-driven MMIF method is proposed to leverage the information distribution relationship among multi-modality images in the latent space. To better preserve the complementary information from different modalities, a local and global network (LAGN) is suggested. Additionally, a loss strategy is designed to establish robust constraints among diffusion-generated images, original images, and fused images. This strategy supervises the training process and prevents information loss in fused images. The experimental results demonstrate that the proposed method surpasses state-of-the-art image fusion methods in terms of unsupervised metrics on three datasets: MRI/CT, MRI/PET, and MRI/SPECT images. The proposed method successfully captures rich details and color information. Furthermore, 16 doctors and medical students were invited to evaluate the effectiveness of our method in assisting clinical diagnosis and treatment.
Page 53 of 94933 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.