Sort by:
Page 50 of 2252247 results

Enhancing weakly supervised data augmentation networks for thyroid nodule assessment using traditional and doppler ultrasound images.

Keatmanee C, Songsaeng D, Klabwong S, Nakaguro Y, Kunapinun A, Ekpanyapong M, Dailey MN

pubmed logopapersJun 30 2025
Thyroid ultrasound (US) is an essential tool for detecting and characterizing thyroid nodules. In this study, we propose an innovative approach to enhance thyroid nodule assessment by integrating Doppler US images with grayscale US images through weakly supervised data augmentation networks (WSDAN). Our method reduces background noise by replacing inefficient augmentation strategies, such as random cropping, with an advanced technique guided by bounding boxes derived from Doppler US images. This targeted augmentation significantly improves model performance in both classification and localization of thyroid nodules. The training dataset comprises 1288 paired grayscale and Doppler US images, with an additional 190 pairs used for three-fold cross-validation. To evaluate the model's efficacy, we tested it on a separate set of 190 grayscale US images. Compared to five state-of-the-art models and the original WSDAN, our Enhanced WSDAN model achieved superior performance. For classification, it reached an accuracy of 91%. For localization, it achieved Dice and Jaccard indices of 75% and 87%, respectively, demonstrating its potential as a valuable clinical tool.

Prediction Crohn's Disease Activity Using Computed Tomography Enterography-Based Radiomics and Serum Markers.

Wang P, Liu Y, Wang Y

pubmed logopapersJun 30 2025
Accurate stratification of the activity index of Crohn's disease (CD) using computed tomography enterography (CTE) radiomics and serum markers can aid in predicting disease progression and assist physicians in personalizing therapeutic regimens for patients with CD. This retrospective study enrolled 233 patients diagnosed with CD between January 2019 and August 2024. Patients were divided into training and testing cohorts at a ratio of 7:3 and further categorized into remission, mild active phase, and moderate-severe active phase groups based on simple endoscopic score for CD (SEC-CD). Radiomics features were extracted from CTE venous images, and T-test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The serum markers were selected based on the variance analysis. We also developed a random forest (RF) model for multi-class stratification of CD. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and quantified the contribution of each feature in the dataset to CD activity via Shapley additive exPlanations (SHAP) values. Finally, we enrolled gender, radiomics scores, and serum scores to develop a nomogram model to verify the effectiveness of feature extraction. 14 non-zero coefficient radiomics features and six serum markers with significant differences (P<0.01) were ultimately selected to predict CD activity. The AUC (micro/macro) for the ensemble machine learning model combining the radiomics features and serum markers is 0.931/0.928 for three-class. The AUC for the remission phase, the mild active phase, and the moderate-severe active phase were 0.983, 0.852, and 0.917, respectively. The mean AUC for the nomogram model was 0.940. A radiomics model was developed by integrating radiomics and serum markers of CD patients, achieving enhanced consistency with SEC-CD in grade CD. This model has the potential to assist clinicians in accurate diagnosis and treatment.

Self-Supervised Multiview Xray Matching

Mohamad Dabboussi, Malo Huard, Yann Gousseau, Pietro Gori

arxiv logopreprintJun 30 2025
Accurate interpretation of multi-view radiographs is crucial for diagnosing fractures, muscular injuries, and other anomalies. While significant advances have been made in AI-based analysis of single images, current methods often struggle to establish robust correspondences between different X-ray views, an essential capability for precise clinical evaluations. In this work, we present a novel self-supervised pipeline that eliminates the need for manual annotation by automatically generating a many-to-many correspondence matrix between synthetic X-ray views. This is achieved using digitally reconstructed radiographs (DRR), which are automatically derived from unannotated CT volumes. Our approach incorporates a transformer-based training phase to accurately predict correspondences across two or more X-ray views. Furthermore, we demonstrate that learning correspondences among synthetic X-ray views can be leveraged as a pretraining strategy to enhance automatic multi-view fracture detection on real data. Extensive evaluations on both synthetic and real X-ray datasets show that incorporating correspondences improves performance in multi-view fracture classification.

Machine learning methods for sex estimation of sub-adults using cranial computed tomography images.

Syed Mohd Hamdan SN, Faizal Abdullah ERM, Wen KJ, Al-Adawiyah Rahmat R, Wan Ibrahim WI, Abd Kadir KA, Ibrahim N

pubmed logopapersJun 30 2025
This research aimed to compare the classification accuracy of three machine learning (ML) methods (random forest (RF), support vector machines (SVM), linear discriminant analysis (LDA)) for sex estimation of sub-adults using cranial computed tomography (CCT) images. A total of 521 CCT scans from sub-adult Malaysians aged 0 to 20 were analysed using Mimics software (Materialise Mimics Ver. 21). Plane-to-plane (PTP) protocol was used for measuring 14 chosen craniometric parameters. A trio of machine learning algorithms RF, SVM, and LDA with GridSearchCV was used to produce classification models for sex estimation. In addition, performance was measured in the form of accuracy, precision, recall, and F1-score, among others. RF produced testing accuracy of 73%, with the best hyperparameters of max_depth = 6, max_samples = 40, and n_estimators = 45. SVM obtained an accuracy of 67% with the best hyperparameters: learning rate (C) = 10, gamma = 0.01, and kernel = radial basis function (RBF). LDA obtained the lowest accuracy of 65% with shrinkage of 0.02. Among the tested ML methods, RF showed the highest testing accuracy in comparison to SVM and LDA. This is the first AI-based classification model that can be used for estimating sex in sub-adults using CCT scans.

Multimodal, Multi-Disease Medical Imaging Foundation Model (MerMED-FM)

Yang Zhou, Chrystie Wan Ning Quek, Jun Zhou, Yan Wang, Yang Bai, Yuhe Ke, Jie Yao, Laura Gutierrez, Zhen Ling Teo, Darren Shu Jeng Ting, Brian T. Soetikno, Christopher S. Nielsen, Tobias Elze, Zengxiang Li, Linh Le Dinh, Lionel Tim-Ee Cheng, Tran Nguyen Tuan Anh, Chee Leong Cheng, Tien Yin Wong, Nan Liu, Iain Beehuat Tan, Tony Kiat Hon Lim, Rick Siow Mong Goh, Yong Liu, Daniel Shu Wei Ting

arxiv logopreprintJun 30 2025
Current artificial intelligence models for medical imaging are predominantly single modality and single disease. Attempts to create multimodal and multi-disease models have resulted in inconsistent clinical accuracy. Furthermore, training these models typically requires large, labour-intensive, well-labelled datasets. We developed MerMED-FM, a state-of-the-art multimodal, multi-specialty foundation model trained using self-supervised learning and a memory module. MerMED-FM was trained on 3.3 million medical images from over ten specialties and seven modalities, including computed tomography (CT), chest X-rays (CXR), ultrasound (US), pathology patches, color fundus photography (CFP), optical coherence tomography (OCT) and dermatology images. MerMED-FM was evaluated across multiple diseases and compared against existing foundational models. Strong performance was achieved across all modalities, with AUROCs of 0.988 (OCT); 0.982 (pathology); 0.951 (US); 0.943 (CT); 0.931 (skin); 0.894 (CFP); 0.858 (CXR). MerMED-FM has the potential to be a highly adaptable, versatile, cross-specialty foundation model that enables robust medical imaging interpretation across diverse medical disciplines.

Genetically Optimized Modular Neural Networks for Precision Lung Cancer Diagnosis

Agrawal, V. L., Agrawal, T.

medrxiv logopreprintJun 30 2025
Lung cancer remains one of the leading causes of cancer mortality, and while low dose CT screening improves mortality, radiological detection is challenging due to the increasing shortage of radiologists. Artificial intelligence can significantly improve the procedure and also decrease the overall workload of the entire healthcare department. Building upon the existing works of application of genetic algorithm this study aims to create a novel algorithm for lung cancer diagnosis with utmost precision. We included a total of 156 CT scans of patients divided into two databases, followed by feature extraction using image statistics, histograms, and 2D transforms (FFT, DCT, WHT). Optimal feature vectors were formed and organized into Excel based knowledge-bases. Genetically trained classifiers like MLP, GFF-NN, MNN and SVM, are then optimized, with experimentations with different combinations of parameters, activation functions, and data partitioning percentages. Evaluation metrics included classification accuracy, Mean Squared Error (MSE), Area under Receiver Operating Characteristics (ROC) curve, and computational efficiency. Computer simulations demonstrated that the MNN (Topology II) classifier, specifically when trained with FFT coefficients and a momentum learning rule, consistently achieved 100% average classification accuracy on the cross-validation dataset for both Data-base I and Data-base II, outperforming MLP-based classifiers. This genetically optimized and trained MNN (Topology II) classifier is therefore recommended as the optimal solution for lung cancer diagnosis from CT scan images.

Derivation and validation of an artificial intelligence-based plaque burden safety cut-off for long-term acute coronary syndrome from coronary computed tomography angiography.

Bär S, Knuuti J, Saraste A, Klén R, Kero T, Nabeta T, Bax JJ, Danad I, Nurmohamed NS, Jukema RA, Knaapen P, Maaniitty T

pubmed logopapersJun 30 2025
Artificial intelligence (AI) has enabled accurate and fast plaque quantification from coronary computed tomography angiography (CCTA). However, AI detects any coronary plaque in up to 97% of patients. To avoid overdiagnosis, a plaque burden safety cut-off for future coronary events is needed. Percent atheroma volume (PAV) was quantified with AI-guided quantitative computed tomography in a blinded fashion. Safety cut-off derivation was performed in the Turku CCTA registry (Finland), and pre-defined as ≥90% sensitivity for acute coronary syndrome (ACS). External validation was performed in the Amsterdam CCTA registry (the Netherlands). In the derivation cohort, 100/2271 (4.4%) patients experienced ACS (median follow-up 6.9 years). A threshold of PAV ≥ 2.6% was derived with 90.0% sensitivity and negative predictive value (NPV) of 99.0%. In the validation cohort 27/568 (4.8%) experienced ACS (median follow-up 6.7 years) with PAV ≥ 2.6% showing 92.6% sensitivity and 99.0% NPV for ACS. In the derivation cohort, 45.2% of patients had PAV < 2.6 vs. 4.3% with PAV 0% (no plaque) (P < 0.001) (validation cohort: 34.3% PAV < 2.6 vs. 2.6% PAV 0%; P < 0.001). Patients with PAV ≥ 2.6% had higher adjusted ACS rates in the derivation [Hazard ratio (HR) 4.65, 95% confidence interval (CI) 2.33-9.28, P < 0.001] and validation cohort (HR 7.31, 95% CI 1.62-33.08, P = 0.010), respectively. This study suggests that PAV up to 2.6% quantified by AI is associated with low-ACS risk in two independent patient cohorts. This cut-off may be helpful for clinical application of AI-guided CCTA analysis, which detects any plaque in up to 96-97% of patients.

Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation

Dewen Zeng, Xinrong Hu, Yu-Jen Chen, Yawen Wu, Xiaowei Xu, Yiyu Shi

arxiv logopreprintJun 30 2025
Weakly supervised semantic segmentation (WSSS) methods using class labels often rely on class activation maps (CAMs) to localize objects. However, traditional CAM-based methods struggle with partial activations and imprecise object boundaries due to optimization discrepancies between classification and segmentation. Recently, the conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks in WSSS, leveraging its strong image generation capabilities tailored to specific class distributions. By modifying or perturbing the condition during diffusion sampling, the related objects can be highlighted in the generated images. Yet, the saliency maps generated by CDMs are prone to noise from background alterations during reverse diffusion. To alleviate the problem, we introduce Contrastive Learning with Diffusion Features (CLDF), a novel method that uses contrastive learning to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation. Specifically, we integrate gradient maps generated from CDM external classifier with CAMs to identify foreground and background pixels with fewer false positives/negatives for contrastive learning, enabling robust pixel embedding learning. Experimental results on four segmentation tasks from two public medical datasets demonstrate that our method significantly outperforms existing baselines.

BIScreener: enhancing breast cancer ultrasound diagnosis through integrated deep learning with interpretability.

Chen Y, Wang P, Ouyang J, Tan M, Nie L, Zhang Y, Wang T

pubmed logopapersJun 30 2025
Breast cancer is the leading cause of death among women worldwide, and early detection through the standardized BI-RADS framework helps physicians assess the risk of malignancy and guide appropriate diagnostic and treatment decisions. In this study, an interpretable deep learning model (BIScreener) was proposed for predicting BI-RADS classifications from breast ultrasound images, aiding in the accurate assessment of breast cancer risk and improving diagnostic efficiency. BIScreener utilizes the stacked generalization of three pretrained convolutional neural networks to analyze ultrasound images obtained from two specific instruments (Mindray R5 and HITACHI) used at local hospitals. BIScreener achieved a classification total accuracy of 90.0% and ROC-AUC value of 0.982 in the external test set for five BI-RADS categories. The proposed method achieved 83.8% classification total accuracy and 0.967 ROC-AUC value for seven BI-RADS categories. In addition, the model improved the diagnostic accuracy of two radiologists by more than 8.1% for five BI-RADS categories and by more than 4.8% for seven BI-RADS categories and reduced the explanation time by more than 19.0%, demonstrating its potential to accelerate and improve the breast cancer diagnosis process.

Assessment of quantitative staging PET/computed tomography parameters using machine learning for early detection of progression in diffuse large B-cell lymphoma.

Aksu A, Us A, Küçüker KA, Solmaz Ş, Turgut B

pubmed logopapersJun 30 2025
This study aimed to investigate the role of volumetric and dissemination parameters obtained from pretreatment 18-fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) in predicting progression/relapse in patients with diffuse large B-cell lymphoma (DLBCL) with machine learning algorithms. Patients diagnosed with DLBCL histopathologically, treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and followed for at least 1 year were reviewed retrospectively. Quantitative parameters such as tumor volume [total metabolic tumor volume (tMTV)], tumor burden [total lesion glycolysis (tTLG)], and the longest distance between two tumor foci (Dmax) were obtained from PET images with a standard uptake value threshold of 4.0. The MTV obtained from the volume of interest with the highest volume was noted as metabolic bulk volume (MBV). By analyzing the patients' PET parameters and clinical information with machine learning algorithms, models that attempt to predict progression/recurrence over 1 year were obtained. Of the 90 patients included, 16 had progression within 1 year. Significant differences were found in tMTV, tTLG, MBV, and Dmax values between patients with and without progression. The area under curve (AUC) of the model obtained with clinical data was 0.701. While a model with an AUC of 0.871 was obtained with a random forest algorithm using PET parameters, the model obtained with the Naive Bayes algorithm including clinical data in PET parameters had an AUC of 0.838. Using quantitative parameters derived from staging PET with machine learning algorithms may enable us to detect early progression in patients with DLBCL and improve early risk stratification and guide treatment decisions in these patients.
Page 50 of 2252247 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.