Sort by:
Page 50 of 56557 results

Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction

Pengfei Yu, Bin Huang, Minghui Zhang, Weiwen Wu, Shaoyu Wang, Qiegen Liu

arxiv logopreprintMay 15 2025
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.

Leveraging Vision Transformers in Multimodal Models for Retinal OCT Analysis.

Feretzakis G, Karakosta C, Gkoulalas-Divanis A, Bisoukis A, Boufeas IZ, Bazakidou E, Sakagianni A, Kalles D, Verykios VS

pubmed logopapersMay 15 2025
Optical Coherence Tomography (OCT) has become an indispensable imaging modality in ophthalmology, providing high-resolution cross-sectional images of the retina. Accurate classification of OCT images is crucial for diagnosing retinal diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). This study explores the efficacy of various deep learning models, including convolutional neural networks (CNNs) and Vision Transformers (ViTs), in classifying OCT images. We also investigate the impact of integrating metadata (patient age, sex, eye laterality, and year) into the classification process, even when a significant portion of metadata is missing. Our results demonstrate that multimodal models leveraging both image and metadata inputs, such as the Multimodal ResNet18, can achieve competitive performance compared to image-only models, such as DenseNet121. Notably, DenseNet121 and Multimodal ResNet18 achieved the highest accuracy of 95.16%, with DenseNet121 showing a slightly higher F1-score of 0.9313. The multimodal ViT-based model also demonstrated promising results, achieving an accuracy of 93.22%, indicating the potential of Vision Transformers (ViTs) in medical image analysis, especially for handling complex multimodal data.

Dual-Domain deep prior guided sparse-view CT reconstruction with multi-scale fusion attention.

Wu J, Lin J, Jiang X, Zheng W, Zhong L, Pang Y, Meng H, Li Z

pubmed logopapersMay 15 2025
Sparse-view CT reconstruction is a challenging ill-posed inverse problem, where insufficient projection data leads to degraded image quality with increased noise and artifacts. Recent deep learning approaches have shown promising results in CT reconstruction. However, existing methods often neglect projection data constraints and rely heavily on convolutional neural networks, resulting in limited feature extraction capabilities and inadequate adaptability. To address these limitations, we propose a Dual-domain deep Prior-guided Multi-scale fusion Attention (DPMA) model for sparse-view CT reconstruction, aiming to enhance reconstruction accuracy while ensuring data consistency and stability. First, we establish a residual regularization strategy that applies constraints on the difference between the prior image and target image, effectively integrating deep learning-based priors with model-based optimization. Second, we develop a multi-scale fusion attention mechanism that employs parallel pathways to simultaneously model global context, regional dependencies, and local details in a unified framework. Third, we incorporate a physics-informed consistency module based on range-null space decomposition to ensure adherence to projection data constraints. Experimental results demonstrate that DPMA achieves improved reconstruction quality compared to existing approaches, particularly in noise suppression, artifact reduction, and fine detail preservation.

Automated Microbubble Discrimination in Ultrasound Localization Microscopy by Vision Transformer.

Wang R, Lee WN

pubmed logopapersMay 15 2025
Ultrasound localization microscopy (ULM) has revolutionized microvascular imaging by breaking the acoustic diffraction limit. However, different ULM workflows depend heavily on distinct prior knowledge, such as the impulse response and empirical selection of parameters (e.g., the number of microbubbles (MBs) per frame M), or the consistency of training-test dataset in deep learning (DL)-based studies. We hereby propose a general ULM pipeline that reduces priors. Our approach leverages a DL model that simultaneously distills microbubble signals and reduces speckle from every frame without estimating the impulse response and M. Our method features an efficient channel attention vision transformer (ViT) and a progressive learning strategy, enabling it to learn global information through training on progressively increasing patch sizes. Ample synthetic data were generated using the k-Wave toolbox to simulate various MB patterns, thus overcoming the deficiency of labeled data. The ViT output was further processed by a standard radial symmetry method for sub-pixel localization. Our method performed well on model-unseen public datasets: one in silico dataset with ground truth and four in vivo datasets of mouse tumor, rat brain, rat brain bolus, and rat kidney. Our pipeline outperformed conventional ULM, achieving higher positive predictive values (precision in DL, 0.88-0.41 vs. 0.83-0.16) and improved accuracy (root-mean-square errors: 0.25-0.14 λ vs. 0.31-0.13 λ) across a range of signal-to-noise ratios from 60 dB to 10 dB. Our model could detect more vessels in diverse in vivo datasets while achieving comparable resolutions to the standard method. The proposed ViT-based model, seamlessly integrated with state-of-the-art downstream ULM steps, improved the overall ULM performance with no priors.

Enhancing medical explainability in deep learning for age-related macular degeneration diagnosis.

Shi L

pubmed logopapersMay 15 2025
Deep learning models hold significant promise for disease diagnosis but often lack transparency in their decision-making processes, limiting trust and hindering clinical adoption. This study introduces a novel multi-task learning framework to enhance the medical explainability of deep learning models for diagnosing age-related macular degeneration (AMD) using fundus images. The framework simultaneously performs AMD classification and lesion segmentation, allowing the model to support its diagnoses with AMD-associated lesions identified through segmentation. In addition, we perform an in-depth interpretability analysis of the model, proposing the Medical Explainability Index (MXI), a novel metric that quantifies the medical relevance of the generated heatmaps by comparing them with the model's lesion segmentation output. This metric provides a measurable basis to evaluate whether the model's decisions are grounded in clinically meaningful information. The proposed method was trained and evaluated on the Automatic Detection Challenge on Age-Related Macular Degeneration (ADAM) dataset. Experimental results demonstrate robust performance, achieving an area under the curve (AUC) of 0.96 for classification and a Dice similarity coefficient (DSC) of 0.59 for segmentation, outperforming single-task models. By offering interpretable and clinically relevant insights, our approach aims to foster greater trust in AI-driven disease diagnosis and facilitate its adoption in clinical practice.

[Orthodontics in the CBCT era: 25 years later, what are the guidelines?].

Foucart JM, Papelard N, Bourriau J

pubmed logopapersMay 15 2025
CBCT has become an essential tool in orthodontics, although its use must remain judicious and evidence-based. This study provides an updated analysis of international recommendations concerning the use of CBCT in orthodontics, with a particular focus on clinical indications, radiation dose reduction, and recent technological advancements. A systematic review of guidelines published between 2015 and 2025 was conducted following the PRISMA methodology. Inclusion criteria comprised official directives from recognized scientific societies and clinical studies evaluating low dose protocols in orthodontics. The analysis of the 19 retained recommendations reveals a consensus regarding the primary indications for CBCT in orthodontics, particularly for impacted teeth, skeletal anomalies, periodontal and upper airways assessment. Dose optimization and the integration of artificial intelligence emerge as major advancements, enabling significant radiation reduction while preserving diagnostic accuracy. The development of low dose protocols and advanced reconstruction algorithms presents promising perspectives for safer and more efficient imaging, increasingly replacing conventional 2D radiographic techniques. However, an international harmonization of recommendations for these new imaging sequences is imperative to standardize clinical practices and enhance patient radioprotection.

Participatory Co-Creation of an AI-Supported Patient Information System: A Multi-Method Qualitative Study.

Heizmann C, Gleim P, Kellmeyer P

pubmed logopapersMay 15 2025
In radiology and other medical fields, informed consent often rely on paper-based forms, which can overwhelm patients with complex terminology. These forms are also resource-intensive. The KIPA project addresses these challenges by developing an AI-assisted patient information system to streamline the consent process, improve patient understanding, and reduce healthcare workload. The KIPA system uses natural language processing (NLP) to provide real-time, accessible explanations, answer questions, and support informed consent. KIPA follows an 'ethics-by-design' approach, integrating user feedback to align with patient and clinician needs. Interviews and usability testing identified requirements, such as simplified language and support for varying digital literacy. The study presented here explores the participatory co-creation of the KIPA system, focusing on improving informed consent in radiology through a multi-method qualitative approach. Preliminary results suggest that KIPA improves patient engagement and reduces insecurities by providing proactive guidance and tailored information. Future work will extend testing to other stakeholders and assess the impact of the system on clinical workflow.

Scientific Evidence for Clinical Text Summarization Using Large Language Models: Scoping Review.

Bednarczyk L, Reichenpfader D, Gaudet-Blavignac C, Ette AK, Zaghir J, Zheng Y, Bensahla A, Bjelogrlic M, Lovis C

pubmed logopapersMay 15 2025
Information overload in electronic health records requires effective solutions to alleviate clinicians' administrative tasks. Automatically summarizing clinical text has gained significant attention with the rise of large language models. While individual studies show optimism, a structured overview of the research landscape is lacking. This study aims to present the current state of the art on clinical text summarization using large language models, evaluate the level of evidence in existing research and assess the applicability of performance findings in clinical settings. This scoping review complied with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Literature published between January 1, 2019, and June 18, 2024, was identified from 5 databases: PubMed, Embase, Web of Science, IEEE Xplore, and ACM Digital Library. Studies were excluded if they did not describe transformer-based models, did not focus on clinical text summarization, did not engage with free-text data, were not original research, were nonretrievable, were not peer-reviewed, or were not in English, French, Spanish, or German. Data related to study context and characteristics, scope of research, and evaluation methodologies were systematically collected and analyzed by 3 authors independently. A total of 30 original studies were included in the analysis. All used observational retrospective designs, mainly using real patient data (n=28, 93%). The research landscape demonstrated a narrow research focus, often centered on summarizing radiology reports (n=17, 57%), primarily involving data from the intensive care unit (n=15, 50%) of US-based institutions (n=19, 73%), in English (n=26, 87%). This focus aligned with the frequent reliance on the open-source Medical Information Mart for Intensive Care dataset (n=15, 50%). Summarization methodologies predominantly involved abstractive approaches (n=17, 57%) on single-document inputs (n=4, 13%) with unstructured data (n=13, 43%), yet reporting on methodological details remained inconsistent across studies. Model selection involved both open-source models (n=26, 87%) and proprietary models (n=7, 23%). Evaluation frameworks were highly heterogeneous. All studies conducted internal validation, but external validation (n=2, 7%), failure analysis (n=6, 20%), and patient safety risks analysis (n=1, 3%) were infrequent, and none reported bias assessment. Most studies used both automated metrics and human evaluation (n=16, 53%), while 10 (33%) used only automated metrics, and 4 (13%) only human evaluation. Key barriers hinder the translation of current research into trustworthy, clinically valid applications. Current research remains exploratory and limited in scope, with many applications yet to be explored. Performance assessments often lack reliability, and clinical impact evaluations are insufficient raising concerns about model utility, safety, fairness, and data privacy. Advancing the field requires more robust evaluation frameworks, a broader research scope, and a stronger focus on real-world applicability.

Advancing Multiple Instance Learning with Continual Learning for Whole Slide Imaging

Xianrui Li, Yufei Cui, Jun Li, Antoni B. Chan

arxiv logopreprintMay 15 2025
Advances in medical imaging and deep learning have propelled progress in whole slide image (WSI) analysis, with multiple instance learning (MIL) showing promise for efficient and accurate diagnostics. However, conventional MIL models often lack adaptability to evolving datasets, as they rely on static training that cannot incorporate new information without extensive retraining. Applying continual learning (CL) to MIL models is a possible solution, but often sees limited improvements. In this paper, we analyze CL in the context of attention MIL models and find that the model forgetting is mainly concentrated in the attention layers of the MIL model. Using the results of this analysis we propose two components for improving CL on MIL: Attention Knowledge Distillation (AKD) and the Pseudo-Bag Memory Pool (PMP). AKD mitigates catastrophic forgetting by focusing on retaining attention layer knowledge between learning sessions, while PMP reduces the memory footprint by selectively storing only the most informative patches, or ``pseudo-bags'' from WSIs. Experimental evaluations demonstrate that our method significantly improves both accuracy and memory efficiency on diverse WSI datasets, outperforming current state-of-the-art CL methods. This work provides a foundation for CL in large-scale, weakly annotated clinical datasets, paving the way for more adaptable and resilient diagnostic models.

Uncertainty Co-estimator for Improving Semi-Supervised Medical Image Segmentation.

Zeng X, Xiong S, Xu J, Du G, Rong Y

pubmed logopapersMay 15 2025
Recently, combining the strategy of consistency regularization with uncertainty estimation has shown promising performance on semi-supervised medical image segmentation tasks. However, most existing methods estimate the uncertainty solely based on the outputs of a single neural network, which results in imprecise uncertainty estimations and eventually degrades the segmentation performance. In this paper, we propose a novel Uncertainty Co-estimator (UnCo) framework to deal with this problem. Inspired by the co-training technique, UnCo establishes two different mean-teacher modules (i.e., two pairs of teacher and student models), and estimates three types of uncertainty from the multi-source predictions generated by these models. Through combining these uncertainties, their differences will help to filter out incorrect noise in each estimate, thus allowing the final fused uncertainty maps to be more accurate. These resulting maps are then used to enhance a cross-consistency regularization imposed between the two modules. In addition, UnCo also designs an internal consistency regularization within each module, so that the student models can aggregate diverse feature information from both modules, thus promoting the semi-supervised segmentation performance. Finally, an adversarial constraint is introduced to maintain the model diversity. Experimental results on four medical image datasets indicate that UnCo can achieve new state-of-the-art performance on both 2D and 3D semi-supervised segmentation tasks. The source code will be available at https://github.com/z1010x/UnCo.
Page 50 of 56557 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.