Sort by:
Page 47 of 1411410 results

An evaluation of rectum contours generated by artificial intelligence automatic contouring software using geometry, dosimetry and predicted toxicity.

Mc Laughlin O, Gholami F, Osman S, O'Sullivan JM, McMahon SJ, Jain S, McGarry CK

pubmed logopapersAug 7 2025
Objective&#xD;This study assesses rectum contours generated using a commercial deep learning auto-contouring model and compares them to clinician contours using geometry, changes in dosimetry and toxicity modelling. &#xD;Approach&#xD;This retrospective study involved 308 prostate cancer patients who were treated using 3D-conformal radiotherapy. Computed tomography images were input into Limbus Contour (v1.8.0b3) to generate auto-contour structures for each patient. Auto-contours were not edited after their generation.&#xD;Rectum auto-contours were compared to clinician contours geometrically and dosimetrically. Dice similarity coefficient (DSC), mean Hausdorff distance (HD) and volume difference were assessed. Dose-volume histogram (DVH) constraints (V41%-V100%) were compared, and a Wilcoxon signed rank test was used to evaluate statistical significance of differences. &#xD;Toxicity modelling to compare contours was carried out using equivalent uniform dose (EUD) and clinical factors of abdominal surgery and atrial fibrillation. Trained models were tested (80:20) in their prediction of grade 1 late rectal bleeding (ntotal=124) using area-under the receiver operating characteristic curve (AUC).&#xD;Main results&#xD;Median DSC (interquartile range (IQR)) was 0.85 (0.09), median HD was 1.38 mm (0.60 mm) and median volume difference was -1.73 cc (14.58 cc). Median DVH differences between contours were found to be small (<1.5%) for all constraints although systematically larger than clinician contours (p<0.05). However, an IQR up to 8.0% was seen for individual patients across all dose constraints.&#xD;Models using EUD alone derived from clinician or auto-contours had AUCs of 0.60 (0.10) and 0.60 (0.09). AUC for models involving clinical factors and dosimetry was 0.65 (0.09) and 0.66 (0.09) when using clinician contours and auto-contours.&#xD;Significance&#xD;Although median DVH metrics were similar, variation for individual patients highlights the importance of clinician review. Rectal bleeding prediction accuracy did not depend on the contour method for this cohort. The auto-contouring model used in this study shows promise in a supervised workflow.&#xD.

Robustness evaluation of an artificial intelligence-based automatic contouring software in daily routine practice.

Fontaine J, Suszko M, di Franco F, Leroux A, Bonnet E, Bosset M, Langrand-Escure J, Clippe S, Fleury B, Guy JB

pubmed logopapersAug 7 2025
AI-based automatic contouring streamlines radiotherapy by reducing contouring time but requires rigorous validation and ongoing daily monitoring. This study assessed how software updates affect contouring accuracy and examined how image quality variations influence AI performance. Two patient cohorts were analyzed. The software updates cohort (40 CT scans: 20 thorax, 10 pelvis, 10 H&N) compared six versions of Limbus AI contouring software. The image quality cohort (20 patients: H&N, pelvis, brain, thorax) analyzed 12 reconstructions per patient using Standard, iDose, and IMR algorithms, with simulated noise and spatial resolution (SR) degradations. AI performance was assessed using Volumetric Dice Similarity Coefficient (vDSC) and 95 % Hausdorff Distance (HD95%) with Wilcoxon tests for significance. In the software updates cohort, vDSC improved for re-trained structures across versions (mean DSC ≥ 0.75), with breast contour vDSC decreasing by 1 % between v1.5 and v1.8B3 (p > 0.05). Median HD95% values were consistently <4 mm, <5 mm, and <12 mm for H&N, pelvis, and thorax contours, respectively (p > 0.05). In the image quality cohort, no significant differences were observed between Standard, iDose, and IMR algorithms. However, noise and SR degradation significantly reduced performance: vDSC ≥ 0.9 dropped from 89 % at 2 % noise to 30 % at 20 %, and from 87 % to 70 % as SR degradation increased (p < 0.001). AI contouring accuracy improved with software updates and showed robustness to minor reconstruction variations, but it was sensitive to noise and SR degradation. Continuous validation and quality control of AI-generated contours are essential. Future studies should include a broader range of anatomical regions and larger cohorts.

Artificial intelligence in forensic neuropathology: A systematic review.

Treglia M, La Russa R, Napoletano G, Ghamlouch A, Del Duca F, Treves B, Frati P, Maiese A

pubmed logopapersAug 7 2025
In recent years, Artificial Intelligence (AI) has gained prominence as a robust tool for clinical decision-making and diagnostics, owing to its capacity to process and analyze large datasets with high accuracy. More specifically, Deep Learning, and its subclasses, have shown significant potential in image processing, including medical imaging and histological analysis. In forensic pathology, AI has been employed for the interpretation of histopathological data, identifying conditions such as myocardial infarction, traumatic injuries, and heart rhythm abnormalities. This review aims to highlight key advances in AI's role, particularly machine learning (ML) and deep learning (DL) techniques, in forensic neuropathology, with a focus on its ability to interpret instrumental and histopathological data to support professional diagnostics. A systematic review of the literature regarding applications of Artificial Intelligence in forensic neuropathology was carried out according to the Preferred Reporting Item for Systematic Review (PRISMA) standards. We selected 34 articles regarding the main applications of AI in this field, dividing them into two categories: those addressing traumatic brain injury (TBI), including intracranial hemorrhage or cerebral microbleeds, and those focusing on epilepsy and SUDEP, including brain disorders and central nervous system neoplasms capable of inducing seizure activity. In both cases, the application of AI techniques demonstrated promising results in the forensic investigation of cerebral pathology, providing a valuable computer-assisted diagnostic tool to aid in post-mortem computed tomography (PMCT) assessments of cause of death and histopathological analyses. In conclusion, this paper presents a comprehensive overview of the key neuropathology areas where the application of artificial intelligence can be valuable in investigating causes of death.

Response Assessment in Hepatocellular Carcinoma: A Primer for Radiologists.

Mroueh N, Cao J, Srinivas Rao S, Ghosh S, Song OK, Kongboonvijit S, Shenoy-Bhangle A, Kambadakone A

pubmed logopapersAug 7 2025
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, necessitating accurate and early diagnosis to guide therapy, along with assessment of treatment response. Response assessment criteria have evolved from traditional morphologic approaches, such as WHO criteria and Response Evaluation Criteria in Solid Tumors (RECIST), to more recent methods focused on evaluating viable tumor burden, including European Association for Study of Liver (EASL) criteria, modified RECIST (mRECIST) and Liver Imaging Reporting and Data System (LI-RADS) Treatment Response (LI-TR) algorithm. This shift reflects the complex and evolving landscape of HCC treatment in the context of emerging systemic and locoregional therapies. Each of these criteria have their own nuanced strengths and limitations in capturing the detailed characteristics of HCC treatment and response assessment. The emergence of functional imaging techniques, including dual-energy CT, perfusion imaging, and rising use of radiomics, are enhancing the capabilities of response assessment. Growth in the realm of artificial intelligence and machine learning models provides an opportunity to refine the precision of response assessment by facilitating analysis of complex imaging data patterns. This review article provides a comprehensive overview of existing criteria, discusses functional and emerging imaging techniques, and outlines future directions for advancing HCC tumor response assessment.

A novel approach for CT image smoothing: Quaternion Bilateral Filtering for kernel conversion.

Nasr M, Piórkowski A, Brzostowski K, El-Samie FEA

pubmed logopapersAug 7 2025
Denoising reconstructed Computed Tomography (CT) images without access to raw projection data remains a significant difficulty in medical imaging, particularly when utilizing sharp or medium reconstruction kernels that generate high-frequency noise. This work introduces an innovative method that integrates quaternion mathematics with bilateral filtering to resolve this issue. The proposed Quaternion Bilateral Filter (QBF) effectively maintains anatomical structures and mitigates noise caused by the kernel by expressing CT scans in quaternion form, with the red, green, and blue channels encoded together. Compared to conventional methods that depend on raw data or grayscale filtering, our approach functions directly on reconstructed sharp kernel images. It converts them to mimic the quality of soft-kernel outputs, obtained with kernels such as B30f, using paired data from the same patients. The efficacy of the QBF is evidenced by both full-reference metrics (Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE)) and no-reference perceptual metrics (Naturalness Image Quality Evaluator (NIQE), Blind Referenceless Image Spatial Quality Evaluator (BRISQUE), and Perception-based Image Quality Evaluator (PIQE)). The results indicate that the QBF demonstrates improved denoising efficacy compared to traditional Bilateral Filter (BF), Non-Local Means (NLM), wavelet, and Convolutional Neural Network (CNN)-based processing, achieving an SSIM of 0.96 and a PSNR of 36.3 on B50f reconstructions. Additionally, segmentation-based visual validation verifies that QBF-filtered outputs maintain essential structural details necessary for subsequent diagnostic tasks. This study emphasizes the importance of quaternion-based filtering as a lightweight, interpretable, and efficient substitute for deep learning models in post-reconstruction CT image enhancement.

CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation

Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold

arxiv logopreprintAug 7 2025
As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.

CT-based Radiomics Signature of Visceral Adipose Tissue for Prediction of Early Recurrence in Patients With NMIBC: a Multicentre Cohort Study.

Yu N, Li J, Cao D, Chen X, Yang D, Jiang N, Wu J, Zhao C, Zheng Y, Chen Y, Jin X

pubmed logopapersAug 7 2025
The objective of this study is to investigate the predictive ability of abdominal fat features derived from computed tomography (CT) to predict early recurrence within a year following the initial transurethral resection of bladder tumor (TURBT) in patients with non-muscle-invasive bladder cancer (NMIBC). A predictive model is constructed in combination with clinical factors to aid in the evaluation of the risk of early recurrence among patients with NMIBC after initial TURBT. This retrospective study enrolled 325 NMIBC patients from three centers. Machine-learning-based visceral adipose tissue (VAT) radiomics models (VAT-RM) and subcutaneous adipose tissue (SAT) radiomics models (SAT-RM) were constructed to identify patients with early recurrence. A combined model integrating VAT-RM and clinical factors was established. The predictive performance of each variable and model was analyzed using the area under the receiver operating characteristic curve (AUC). The net benefit of each variable and model was presented through decision curve analysis (DCA). The calibration was evaluated utilizing the Hosmer-Lemeshow test. The VAT-RM demonstrated satisfactory performance in the training cohort (AUC = 0.853, 95% CI 0.768-0.937), test cohort 1 (AUC = 0.823, 95% CI 0.730-0.916), and test cohort 2 (AUC = 0.808, 95% CI 0.681-0.935). Across all cohorts, the AUC values of the VAT-RM were higher than those of the SAT-RM (P < 0.001). The DCA curves further confirmed that the clinical net profit of the VAT-RM was superior to that of the SAT-RM. In multivariate logistic regression analysis, the VAT-RM emerged as the most significant independent predictor (odds ratio [OR] = 0.295, 95% CI 0.141-0.508, P < 0.001). The fusion model exhibited excellent AUC values of 0.938, 0.909, and 0.905 across three cohorts. The fusion model surpassed the traditional risk assessment frameworks in both predictive efficacy and clinical net benefit. VAT serves as a crucial factor in early postoperative recurrence in NMIBC patients. The VAT-RM can accurately identify high-risk patients with early postoperative recurrence, offering significant advantages over SAT-RM. The new predictive model constructed by integrating the VAT-RM and clinical factors exhibits excellent predictive performance, clinical net benefits, and calibration accuracy.

Unsupervised learning for inverse problems in computed tomography

Laura Hellwege, Johann Christopher Engster, Moritz Schaar, Thorsten M. Buzug, Maik Stille

arxiv logopreprintAug 7 2025
This study presents an unsupervised deep learning approach for computed tomography (CT) image reconstruction, leveraging the inherent similarities between deep neural network training and conventional iterative reconstruction methods. By incorporating forward and backward projection layers within the deep learning framework, we demonstrate the feasibility of reconstructing images from projection data without relying on ground-truth images. Our method is evaluated on the two-dimensional 2DeteCT dataset, showcasing superior performance in terms of mean squared error (MSE) and structural similarity index (SSIM) compared to traditional filtered backprojection (FBP) and maximum likelihood (ML) reconstruction techniques. Additionally, our approach significantly reduces reconstruction time, making it a promising alternative for real-time medical imaging applications. Future work will focus on extending this methodology to three-dimensional reconstructions and enhancing the adaptability of the projection geometry.

Unsupervised learning for inverse problems in computed tomography

Laura Hellwege, Johann Christopher Engster, Moritz Schaar, Thorsten M. Buzug, Maik Stille

arxiv logopreprintAug 7 2025
This study presents an unsupervised deep learning approach for computed tomography (CT) image reconstruction, leveraging the inherent similarities between deep neural network training and conventional iterative reconstruction methods. By incorporating forward and backward projection layers within the deep learning framework, we demonstrate the feasibility of reconstructing images from projection data without relying on ground-truth images. Our method is evaluated on the two-dimensional 2DeteCT dataset, showcasing superior performance in terms of mean squared error (MSE) and structural similarity index (SSIM) compared to traditional filtered backprojection (FBP) and maximum likelihood (ML) reconstruction techniques. Additionally, our approach significantly reduces reconstruction time, making it a promising alternative for real-time medical imaging applications. Future work will focus on extending this methodology to three-dimensional reconstructions and enhancing the adaptability of the projection geometry.

Deep Learning-Based Cascade 3D Kidney Segmentation Method.

Hao Z, Chapman BE

pubmed logopapersAug 7 2025
Renal tumors require early diagnosis and precise localization for effective treatment. This study aims to automate renal tumor analysis in abdominal CT images using a cascade 3D U-Net architecture for semantic kidney segmentation. To address challenges like edge detection and small object segmentation, the framework incorporates residual blocks to enhance convergence and efficiency. Comprehensive training configurations, preprocessing, and postprocessing strategies were employed to ensure accurate results. Tested on KiTS2019 data, the method ranked 23rd on the leaderboard (Nov 2024), demonstrating the enhanced cascade 3D U-Net's effectiveness in improving segmentation precision.
Page 47 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.