Sort by:
Page 47 of 58575 results

Efficient feature extraction using light-weight CNN attention-based deep learning architectures for ultrasound fetal plane classification.

Sivasubramanian A, Sasidharan D, Sowmya V, Ravi V

pubmed logopapersMay 28 2025
Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.

Deep Learning-Based BMD Estimation from Radiographs with Conformal Uncertainty Quantification

Long Hui, Wai Lok Yeung

arxiv logopreprintMay 28 2025
Limited DXA access hinders osteoporosis screening. This proof-of-concept study proposes using widely available knee X-rays for opportunistic Bone Mineral Density (BMD) estimation via deep learning, emphasizing robust uncertainty quantification essential for clinical use. An EfficientNet model was trained on the OAI dataset to predict BMD from bilateral knee radiographs. Two Test-Time Augmentation (TTA) methods were compared: traditional averaging and a multi-sample approach. Crucially, Split Conformal Prediction was implemented to provide statistically rigorous, patient-specific prediction intervals with guaranteed coverage. Results showed a Pearson correlation of 0.68 (traditional TTA). While traditional TTA yielded better point predictions, the multi-sample approach produced slightly tighter confidence intervals (90%, 95%, 99%) while maintaining coverage. The framework appropriately expressed higher uncertainty for challenging cases. Although anatomical mismatch between knee X-rays and standard DXA limits immediate clinical use, this method establishes a foundation for trustworthy AI-assisted BMD screening using routine radiographs, potentially improving early osteoporosis detection.

High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models

Tristan S. W. Stevens, Oisín Nolan, Oudom Somphone, Jean-Luc Robert, Ruud J. G. van Sloun

arxiv logopreprintMay 28 2025
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces the reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain the focusing in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.

Cascaded 3D Diffusion Models for Whole-body 3D 18-F FDG PET/CT synthesis from Demographics

Siyeop Yoon, Sifan Song, Pengfei Jin, Matthew Tivnan, Yujin Oh, Sekeun Kim, Dufan Wu, Xiang Li, Quanzheng Li

arxiv logopreprintMay 28 2025
We propose a cascaded 3D diffusion model framework to synthesize high-fidelity 3D PET/CT volumes directly from demographic variables, addressing the growing need for realistic digital twins in oncologic imaging, virtual trials, and AI-driven data augmentation. Unlike deterministic phantoms, which rely on predefined anatomical and metabolic templates, our method employs a two-stage generative process. An initial score-based diffusion model synthesizes low-resolution PET/CT volumes from demographic variables alone, providing global anatomical structures and approximate metabolic activity. This is followed by a super-resolution residual diffusion model that refines spatial resolution. Our framework was trained on 18-F FDG PET/CT scans from the AutoPET dataset and evaluated using organ-wise volume and standardized uptake value (SUV) distributions, comparing synthetic and real data between demographic subgroups. The organ-wise comparison demonstrated strong concordance between synthetic and real images. In particular, most deviations in metabolic uptake values remained within 3-5% of the ground truth in subgroup analysis. These findings highlight the potential of cascaded 3D diffusion models to generate anatomically and metabolically accurate PET/CT images, offering a robust alternative to traditional phantoms and enabling scalable, population-informed synthetic imaging for clinical and research applications.

STA-Risk: A Deep Dive of Spatio-Temporal Asymmetries for Breast Cancer Risk Prediction

Zhengbo Zhou, Dooman Arefan, Margarita Zuley, Jules Sumkin, Shandong Wu

arxiv logopreprintMay 27 2025
Predicting the risk of developing breast cancer is an important clinical tool to guide early intervention and tailoring personalized screening strategies. Early risk models have limited performance and recently machine learning-based analysis of mammogram images showed encouraging risk prediction effects. These models however are limited to the use of a single exam or tend to overlook nuanced breast tissue evolvement in spatial and temporal details of longitudinal imaging exams that are indicative of breast cancer risk. In this paper, we propose STA-Risk (Spatial and Temporal Asymmetry-based Risk Prediction), a novel Transformer-based model that captures fine-grained mammographic imaging evolution simultaneously from bilateral and longitudinal asymmetries for breast cancer risk prediction. STA-Risk is innovative by the side encoding and temporal encoding to learn spatial-temporal asymmetries, regulated by a customized asymmetry loss. We performed extensive experiments with two independent mammogram datasets and achieved superior performance than four representative SOTA models for 1- to 5-year future risk prediction. Source codes will be released upon publishing of the paper.

Modeling Brain Aging with Explainable Triamese ViT: Towards Deeper Insights into Autism Disorder.

Zhang Z, Aggarwal V, Angelov P, Jiang R

pubmed logopapersMay 27 2025
Machine learning, particularly through advanced imaging techniques such as three-dimensional Magnetic Resonance Imaging (MRI), has significantly improved medical diagnostics. This is especially critical for diagnosing complex conditions like Alzheimer's disease. Our study introduces Triamese-ViT, an innovative Tri-structure of Vision Transformers (ViTs) that incorporates a built-in interpretability function, it has structure-aware explainability that allows for the identification and visualization of key features or regions contributing to the prediction, integrates information from three perspectives to enhance brain age estimation. This method not only increases accuracy but also improves interoperability with existing techniques. When evaluated, Triamese-ViT demonstrated superior performance and produced insightful attention maps. We applied these attention maps to the analysis of natural aging and the diagnosis of Autism Spectrum Disorder (ASD). The results aligned with those from occlusion analysis, identifying the Cingulum, Rolandic Operculum, Thalamus, and Vermis as important regions in normal aging, and highlighting the Thalamus and Caudate Nucleus as key regions for ASD diagnosis.

Privacy-Preserving Chest X-ray Report Generation via Multimodal Federated Learning with ViT and GPT-2

Md. Zahid Hossain, Mustofa Ahmed, Most. Sharmin Sultana Samu, Md. Rakibul Islam

arxiv logopreprintMay 27 2025
The automated generation of radiology reports from chest X-ray images holds significant promise in enhancing diagnostic workflows while preserving patient privacy. Traditional centralized approaches often require sensitive data transfer, posing privacy concerns. To address this, the study proposes a Multimodal Federated Learning framework for chest X-ray report generation using the IU-Xray dataset. The system utilizes a Vision Transformer (ViT) as the encoder and GPT-2 as the report generator, enabling decentralized training without sharing raw data. Three Federated Learning (FL) aggregation strategies: FedAvg, Krum Aggregation and a novel Loss-aware Federated Averaging (L-FedAvg) were evaluated. Among these, Krum Aggregation demonstrated superior performance across lexical and semantic evaluation metrics such as ROUGE, BLEU, BERTScore and RaTEScore. The results show that FL can match or surpass centralized models in generating clinically relevant and semantically rich radiology reports. This lightweight and privacy-preserving framework paves the way for collaborative medical AI development without compromising data confidentiality.

Quantitative computed tomography imaging classification of cement dust-exposed patients-based Kolmogorov-Arnold networks.

Chau NK, Kim WJ, Lee CH, Chae KJ, Jin GY, Choi S

pubmed logopapersMay 27 2025
Occupational health assessment is critical for detecting respiratory issues caused by harmful exposures, such as cement dust. Quantitative computed tomography (QCT) imaging provides detailed insights into lung structure and function, enhancing the diagnosis of lung diseases. However, its high dimensionality poses challenges for traditional machine learning methods. In this study, Kolmogorov-Arnold networks (KANs) were used for the binary classification of QCT imaging data to assess respiratory conditions associated with cement dust exposure. The dataset comprised QCT images from 609 individuals, including 311 subjects exposed to cement dust and 298 healthy controls. We derived 141 QCT-based variables and employed KANs with two hidden layers of 15 and 8 neurons. The network parameters, including grid intervals, polynomial order, learning rate, and penalty strengths, were carefully fine-tuned. The performance of the model was assessed through various metrics, including accuracy, precision, recall, F1 score, specificity, and the Matthews Correlation Coefficient (MCC). A five-fold cross-validation was employed to enhance the robustness of the evaluation. SHAP analysis was applied to interpret the sensitive QCT features. The KAN model demonstrated consistently high performance across all metrics, with an average accuracy of 98.03 %, precision of 97.35 %, recall of 98.70 %, F1 score of 98.01 %, and specificity of 97.40 %. The MCC value further confirmed the robustness of the model in managing imbalanced datasets. The comparative analysis demonstrated that the KAN model outperformed traditional methods and other deep learning approaches, such as TabPFN, ANN, FT-Transformer, VGG19, MobileNets, ResNet101, XGBoost, SVM, random forest, and decision tree. SHAP analysis highlighted structural and functional lung features, such as airway geometry, wall thickness, and lung volume, as key predictors. KANs significantly improved the classification of QCT imaging data, enhancing early detection of cement dust-induced respiratory conditions. SHAP analysis supported model interpretability, enhancing its potential for clinical translation in occupational health assessments.

Advances in Diagnostic Approaches for Alzheimer's Disease: From Biomarkers to Deep Learning Technology.

Asif M, Ullah H, Jamil N, Riaz M, Zain M, Pushparaj PN, Rasool M

pubmed logopapersMay 27 2025
Alzheimer's disease (AD) is a devastating neurological disorder that affects humans and is a major contributor to dementia. It is characterized by cognitive dysfunction, impairing an individual's ability to perform daily tasks. In AD, nerve cells in areas of the brain related to cognitive function are damaged. Despite extensive research, there is currently no specific therapeutic or diagnostic approach for this fatal disease. However, scientists worldwide have developed effective techniques for diagnosing and managing this challenging disorder. Among the various methods used to diagnose AD are feedback from blood relatives and observations of changes in an individual's behavioral and cognitive abilities. Biomarkers, such as amyloid beta and measures of neurodegeneration, aid in the early detection of Alzheimer's disease (AD) through cerebrospinal fluid (CSF) samples and brain imaging techniques like Magnetic Resonance Imaging (MRI). Advanced medical imaging technologies, including X-ray, CT, MRI, ultrasound, mammography, and PET, provide valuable insights into human anatomy and function. MRI, in particular, is non-invasive and useful for scanning both the structural and functional aspects of the brain. Additionally, Machine Learning (ML) and deep learning (DL) technologies, especially Convolutional Neural Networks (CNNs), have demonstrated high accuracy in diagnosing AD by detecting brain changes. However, these technologies are intended to support, rather than replace, clinical assessments by medical professionals.
Page 47 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.