Sort by:
Page 44 of 92915 results

Measuring kidney stone volume - practical considerations and current evidence from the EAU endourology section.

Grossmann NC, Panthier F, Afferi L, Kallidonis P, Somani BK

pubmed logopapersJul 1 2025
This narrative review provides an overview of the use, differences, and clinical impact of current methods for kidney stone volume assessment. The different approaches to volume measurement are based on noncontrast computed tomography (NCCT). While volume measurement using formulas is sufficient for smaller stones, it tends to overestimate volume for larger or irregularly shaped calculi. In contrast, software-based segmentation significantly improves accuracy and reproducibility, and artificial intelligence based volumetry additionally shows excellent agreement with reference standards while reducing observer variability and measurement time. Moreover, specific CT preparation protocols may further enhance image quality and thus improve measurement accuracy. Clinically, stone volume has proven to be a superior predictor of stone-related events during follow-up, spontaneous stone passage under conservative management, and stone-free rates after shockwave lithotripsy (SWL) and ureteroscopy (URS) compared to linear measurements. Although manual measurement remains practical, its accuracy diminishes for complex or larger stones. Software-based segmentation and volumetry offer higher precision and efficiency but require established standards and broader access to dedicated software for routine clinical use.

Dual-type deep learning-based image reconstruction for advanced denoising and super-resolution processing in head and neck T2-weighted imaging.

Fujima N, Shimizu Y, Ikebe Y, Kameda H, Harada T, Tsushima N, Kano S, Homma A, Kwon J, Yoneyama M, Kudo K

pubmed logopapersJul 1 2025
To assess the utility of dual-type deep learning (DL)-based image reconstruction with DL-based image denoising and super-resolution processing by comparing images reconstructed with the conventional method in head and neck fat-suppressed (Fs) T2-weighted imaging (T2WI). We retrospectively analyzed the cases of 43 patients who underwent head/neck Fs-T2WI for the assessment of their head and neck lesions. All patients underwent two sets of Fs-T2WI scans with conventional- and DL-based reconstruction. The Fs-T2WI with DL-based reconstruction was acquired based on a 30% reduction of its spatial resolution in both the x- and y-axes with a shortened scan time. Qualitative and quantitative assessments were performed with both the conventional method- and DL-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, visibility of anatomical structures, degree of artifact(s), lesion conspicuity, and lesion edge sharpness based on five-point grading. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the lesion and the contrast-to-noise ratio (CNR) between the lesion and the adjacent or nearest muscle. In the qualitative analysis, significant differences were observed between the Fs-T2WI with the conventional- and DL-based reconstruction in all of the evaluation items except the degree of the artifact(s) (p < 0.001). In the quantitative analysis, significant differences were observed in the SNR between the Fs-T2WI with conventional- (21.4 ± 14.7) and DL-based reconstructions (26.2 ± 13.5) (p < 0.001). In the CNR assessment, the CNR between the lesion and adjacent or nearest muscle in the DL-based Fs-T2WI (16.8 ± 11.6) was significantly higher than that in the conventional Fs-T2WI (14.2 ± 12.9) (p < 0.001). Dual-type DL-based image reconstruction by an effective denoising and super-resolution process successfully provided high image quality in head and neck Fs-T2WI with a shortened scan time compared to the conventional imaging method.

Data-efficient generalization of AI transformers for noise reduction in ultra-fast lung PET scans.

Wang J, Zhang X, Miao Y, Xue S, Zhang Y, Shi K, Guo R, Li B, Zheng G

pubmed logopapersJul 1 2025
Respiratory motion during PET acquisition may produce lesion blurring. Ultra-fast 20-second breath-hold (U2BH) PET reduces respiratory motion artifacts, but the shortened scanning time increases statistical noise and may affect diagnostic quality. This study aims to denoise the U2BH PET images using a deep learning (DL)-based method. The study was conducted on two datasets collected from five scanners where the first dataset included 1272 retrospectively collected full-time PET data while the second dataset contained 46 prospectively collected U2BH and the corresponding full-time PET/CT images. A robust and data-efficient DL method called mask vision transformer (Mask-ViT) was proposed which, after fine-tuned on a limited number of training data from a target scanner, was directly applied to unseen testing data from new scanners. The performance of Mask-ViT was compared with state-of-the-art DL methods including U-Net and C-Gan taking the full-time PET images as the reference. Statistical analysis on image quality metrics were carried out with Wilcoxon signed-rank test. For clinical evaluation, two readers scored image quality on a 5-point scale (5 = excellent) and provided a binary assessment for diagnostic quality evaluation. The U2BH PET images denoised by Mask-ViT showed statistically significant improvement over U-Net and C-Gan on image quality metrics (p < 0.05). For clinical evaluation, Mask-ViT exhibited a lesion detection accuracy of 91.3%, 90.4% and 91.7%, when it was evaluated on three different scanners. Mask-ViT can effectively enhance the quality of the U2BH PET images in a data-efficient generalization setup. The denoised images meet clinical diagnostic requirements of lesion detectability.

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Lee TY, Yoon JH, Park JY, Park SH, Kim H, Lee CM, Choi Y, Lee JM

pubmed logopapersJul 1 2025
The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design. This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included ( a ) being aged between 20 and 85 years and ( b ) having suspected or known liver metastases. Dual-source CT scans were conducted, with the standard radiation dose divided in a 2:1 ratio between tubes A and B (67% and 33%, respectively). The voltage settings of 100/120 kVp were selected based on the participant's body mass index (<30 vs ≥30 kg/m 2 ). For image reconstruction, MBIR was utilized for standard-dose (100%) images, whereas DLR was employed for both low-dose (67%) and ultra-low-dose (33%) images. Three radiologists independently evaluated FLL conspicuity, the probability of metastasis, and subjective image quality using a 5-point Likert scale, in addition to quantitative signal-to-noise and contrast-to-noise ratios. The noninferiority margins were set at -0.5 for conspicuity and -0.1 for detection. One hundred thirty-three participants (male = 58, mean body mass index = 23.0 ± 3.4 kg/m 2 ) were included in the analysis. The low- and ultra-low- dose had a lower radiation dose than the standard-dose (median CT dose index volume: 3.75, 1.87 vs 5.62 mGy, respectively, in the arterial phase; 3.89, 1.95 vs 5.84 in the portal venous phase, P < 0.001 for all). Median FLL conspicuity was lower in the low- and ultra-low-dose scans compared with the standard-dose (3.0 [interquartile range, IQR: 2.0, 4.0], 3.0 [IQR: 1.0, 4.0] vs 3.0 [IQR: 2.0, 4.0] in the arterial phase; 4.0 [IQR: 1.0, 5.0], 3.0 [IQR: 1.0, 4.0] vs 4.0 [IQR: 2.0, 5.0] in the portal venous phases), yet within the noninferiority margin ( P < 0.001 for all). FLL detection was also lower but remained within the margin (lesion detection rate: 0.772 [95% confidence interval, CI: 0.727, 0.812], 0.754 [0.708, 0.795], respectively) compared with the standard-dose (0.810 [95% CI: 0.770, 0.844]). Sensitivity for liver metastasis differed between the standard- (80.6% [95% CI: 76.0, 84.5]), low-, and ultra-low-doses (75.7% [95% CI: 70.2, 80.5], 73.7 [95% CI: 68.3, 78.5], respectively, P < 0.001 for both), whereas specificity was similar ( P > 0.05). Low- and ultra-low-dose CT with DLR showed noninferior FLL conspicuity and detection compared with standard-dose CT with MBIR. Caution is needed due to a potential decrease in sensitivity for metastasis ( clinicaltrials.gov/NCT05324046 ).

The impact of multi-modality fusion and deep learning on adult age estimation based on bone mineral density.

Cao Y, Zhang J, Ma Y, Zhang S, Li C, Liu S, Chen F, Huang P

pubmed logopapersJul 1 2025
Age estimation, especially in adults, presents substantial challenges in different contexts ranging from forensic to clinical applications. Bone mineral density (BMD), with its distinct age-related variations, has emerged as a critical marker in this domain. This study aims to enhance chronological age estimation accuracy using deep learning (DL) incorporating a multi-modality fusion strategy based on BMD. We conducted a retrospective analysis of 4296 CT scans from a Chinese population, covering August 2015 to November 2022, encompassing lumbar, femur, and pubis modalities. Our DL approach, integrating multi-modality fusion, was applied to predict chronological age automatically. The model's performance was evaluated using an internal real-world clinical cohort of 644 scans (December 2022 to May 2023) and an external cadaver validation cohort of 351 scans. In single-modality assessments, the lumbar modality excelled. However, multi-modality models demonstrated superior performance, evidenced by lower mean absolute errors (MAEs) and higher Pearson's R² values. The optimal multi-modality model exhibited outstanding R² values of 0.89 overall, 0.88 in females, 0.90 in males, with the MAEs of 4.05 overall, 3.69 in females, 4.33 in males in the internal validation cohort. In the external cadaver validation, the model maintained favourable R² values (0.84 overall, 0.89 in females, 0.82 in males) and MAEs (5.01 overall, 4.71 in females, 5.09 in males), highlighting its generalizability across diverse scenarios. The integration of multi-modalities fusion with DL significantly refines the accuracy of adult age estimation based on BMD. The AI-based system that effectively combines multi-modalities BMD data, presenting a robust and innovative tool for accurate AAE, poised to significantly improve both geriatric diagnostics and forensic investigations.

Automated vs manual cardiac MRI planning: a single-center prospective evaluation of reliability and scan times.

Glessgen C, Crowe LA, Wetzl J, Schmidt M, Yoon SS, Vallée JP, Deux JF

pubmed logopapersJul 1 2025
Evaluating the impact of an AI-based automated cardiac MRI (CMR) planning software on procedure errors and scan times compared to manual planning alone. Consecutive patients undergoing non-stress CMR were prospectively enrolled at a single center (August 2023-February 2024) and randomized into manual, or automated scan execution using prototype software. Patients with pacemakers, targeted indications, or inability to consent were excluded. All patients underwent the same CMR protocol with contrast, in breath-hold (BH) or free breathing (FB). Supervising radiologists recorded procedure errors (plane prescription, forgotten views, incorrect propagation of cardiac planes, and field-of-view mismanagement). Scan times and idle phase (non-acquisition portion) were computed from scanner logs. Most data were non-normally distributed and compared using non-parametric tests. Eighty-two patients (mean age, 51.6 years ± 17.5; 56 men) were included. Forty-four patients underwent automated and 38 manual CMRs. The mean rate of procedure errors was significantly (p = 0.01) lower in the automated (0.45) than in the manual group (1.13). The rate of error-free examinations was higher (p = 0.03) in the automated (31/44; 70.5%) than in the manual group (17/38; 44.7%). Automated studies were shorter than manual studies in FB (30.3 vs 36.5 min, p < 0.001) but had similar durations in BH (42.0 vs 43.5 min, p = 0.42). The idle phase was lower in automated studies for FB and BH strategies (both p < 0.001). An AI-based automated software performed CMR at a clinical level with fewer planning errors and improved efficiency compared to manual planning. Question What is the impact of an AI-based automated CMR planning software on procedure errors and scan times compared to manual planning alone? Findings Software-driven examinations were more reliable (71% error-free) than human-planned ones (45% error-free) and showed improved efficiency with reduced idle time. Clinical relevance CMR examinations require extensive technologist training, and continuous attention, and involve many planning steps. A fully automated software reliably acquired non-stress CMR potentially reducing mistake risk and increasing data homogeneity.

Liver lesion segmentation in ultrasound: A benchmark and a baseline network.

Li J, Zhu L, Shen G, Zhao B, Hu Y, Zhang H, Wang W, Wang Q

pubmed logopapersJul 1 2025
Accurate liver lesion segmentation in ultrasound is a challenging task due to high speckle noise, ambiguous lesion boundaries, and inhomogeneous intensity distribution inside the lesion regions. This work first collected and annotated a dataset for liver lesion segmentation in ultrasound. In this paper, we propose a novel convolutional neural network to learn dual self-attentive transformer features for boosting liver lesion segmentation by leveraging the complementary information among non-local features encoded at different layers of the transformer architecture. To do so, we devise a dual self-attention refinement (DSR) module to synergistically utilize self-attention and reverse self-attention mechanisms to extract complementary lesion characteristics between cascaded multi-layer feature maps, assisting the model to produce more accurate segmentation results. Moreover, we propose a False-Positive-Negative loss to enable our network to further suppress the non-liver-lesion noise at shallow transformer layers and enhance more target liver lesion details into CNN features at deep transformer layers. Experimental results show that our network outperforms state-of-the-art methods quantitatively and qualitatively.

Preoperative discrimination of absence or presence of myometrial invasion in endometrial cancer with an MRI-based multimodal deep learning radiomics model.

Chen Y, Ruan X, Wang X, Li P, Chen Y, Feng B, Wen X, Sun J, Zheng C, Zou Y, Liang B, Li M, Long W, Shen Y

pubmed logopapersJul 1 2025
Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI. During March 2010 and February 2023, 1139 EC patients (age 54.771 ± 8.465 years; range 24-89 years) from five independent centers were enrolled retrospectively. We utilized ResNet18 to extract multi-scale deep learning features from T2-weighted imaging followed by feature selection via Mann-Whitney U test. Subsequently, a Deep Learning Signature (DLS) was formulated using Integrated Sparse Bayesian Extreme Learning Machine. Furthermore, we developed Clinical Model (CM) based on clinical characteristics and MDLR model by integrating clinical characteristics with DLS. The area under the curve (AUC) was used for evaluating diagnostic performance of the models. Decision curve analysis (DCA) and integrated discrimination index (IDI) were used to assess the clinical benefit and compare the predictive performance of models. The MDLR model comprised of age, histopathologic grade, subjective MR findings (TMD and Reading for MI status) and DLS demonstrated the best predictive performance. The AUC values for MDLR in training set, internal validation set, external validation set 1, and external validation set 2 were 0.899 (95% CI, 0.866-0.926), 0.874 (95% CI, 0.829-0.912), 0.862 (95% CI, 0.817-0.899) and 0.867 (95% CI, 0.806-0.914) respectively. The IDI and DCA showed higher diagnostic performance and clinical net benefits for the MDLR than for CM or DLS, which revealed MDLR may enhance decision-making support. The MDLR which incorporated clinical characteristics and DLS could improve preoperative accuracy in discriminating absence or presence of MI. This improvement may facilitate individualized treatment decision-making for EC.

CQENet: A segmentation model for nasopharyngeal carcinoma based on confidence quantitative evaluation.

Qi Y, Wei L, Yang J, Xu J, Wang H, Yu Q, Shen G, Cao Y

pubmed logopapersJul 1 2025
Accurate segmentation of the tumor regions of nasopharyngeal carcinoma (NPC) is of significant importance for radiotherapy of NPC. However, the precision of existing automatic segmentation methods for NPC remains inadequate, primarily manifested in the difficulty of tumor localization and the challenges in delineating blurred boundaries. Additionally, the black-box nature of deep learning models leads to insufficient quantification of the confidence in the results, preventing users from directly understanding the model's confidence in its predictions, which severely impacts the clinical application of deep learning models. This paper proposes an automatic segmentation model for NPC based on confidence quantitative evaluation (CQENet). To address the issue of insufficient confidence quantification in NPC segmentation results, we introduce a confidence assessment module (CAM) that enables the model to output not only the segmentation results but also the confidence in those results, aiding users in understanding the uncertainty risks associated with model outputs. To address the difficulty in localizing the position and extent of tumors, we propose a tumor feature adjustment module (FAM) for precise tumor localization and extent determination. To address the challenge of delineating blurred tumor boundaries, we introduce a variance attention mechanism (VAM) to assist in edge delineation during fine segmentation. We conducted experiments on a multicenter NPC dataset, validating that our proposed method is effective and superior to existing state-of-the-art models, possessing considerable clinical application value.

Interstitial-guided automatic clinical tumor volume segmentation network for cervical cancer brachytherapy.

Tan S, He J, Cui M, Gao Y, Sun D, Xie Y, Cai J, Zaki N, Qin W

pubmed logopapersJul 1 2025
Automatic clinical tumor volume (CTV) delineation is pivotal to improving outcomes for interstitial brachytherapy cervical cancer. However, the prominent differences in gray values due to the interstitial needles bring great challenges on deep learning-based segmentation model. In this study, we proposed a novel interstitial-guided segmentation network termed advance reverse guided network (ARGNet) for cervical tumor segmentation with interstitial brachytherapy. Firstly, the location information of interstitial needles was integrated into the deep learning framework via multi-task by a cross-stitch way to share encoder feature learning. Secondly, a spatial reverse attention mechanism is introduced to mitigate the distraction characteristic of needles on tumor segmentation. Furthermore, an uncertainty area module is embedded between the skip connections and the encoder of the tumor segmentation task, which is to enhance the model's capability in discerning ambiguous boundaries between the tumor and the surrounding tissue. Comprehensive experiments were conducted retrospectively on 191 CT scans under multi-course interstitial brachytherapy. The experiment results demonstrated that the characteristics of interstitial needles play a role in enhancing the segmentation, achieving the state-of-the-art performance, which is anticipated to be beneficial in radiotherapy planning.
Page 44 of 92915 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.