Sort by:
Page 44 of 66652 results

Framework for enhanced respiratory disease identification with clinical handcrafted features.

Khokan MIP, Tonni TJ, Rony MAH, Fatema K, Hasan MZ

pubmed logopapersJun 25 2025
Respiratory disorders cause approximately 4 million deaths annually worldwide, making them the third leading cause of mortality. Early detection is critical to improving survival rates and recovery outcomes. However, chest X-rays require expertise, and computational intelligence provides valuable support to improve diagnostic accuracy and support medical professionals in decision-making. This study presents an automated system to classify respiratory diseases using three diverse datasets comprising 18,000 chest X-ray images and masks, categorized into six classes. Image preprocessing techniques, such as resizing for input standardization and CLAHE for contrast enhancement, were applied to ensure uniformity and improve the visual quality of the images. Albumentations-based augmentation methods addressed class imbalances, while bitwise segmentation focused on extracting the region of interest (ROI). Furthermore, clinically handcrafted feature extraction enabled the accurate identification of 20 critical clinical features essential for disease classification. The K-nearest neighbors (KNN) graph construction technique was utilized to transform tabular data into graph structures for effective node classification. We employed feature analysis to identify critical attributes that contribute to class predictions within the graph structure. Additionally, the GNNExplainer was utilized to validate these findings by highlighting significant nodes, edges, and features that influence the model's decision-making process. The proposed model, Chest X-ray Graph Neural Network (CHXGNN), a robust Graph Neural Network (GNN) architecture, incorporates advanced layers, batch normalization, dropout regularization, and optimization strategies. Extensive testing and ablation studies demonstrated the model's exceptional performance, achieving an accuracy of 99.56 %. Our CHXGNN model shows significant potential in detecting and classifying respiratory diseases, promising to enhance diagnostic efficiency and improve patient outcomes in respiratory healthcare.

The Current State of Artificial Intelligence on Detecting Pulmonary Embolism via Computerised Tomography Pulmonary Angiogram: A Systematic Review.

Hassan MSTA, Elhotiby MAM, Shah V, Rocha H, Rad AA, Miller G, Malawana J

pubmed logopapersJun 25 2025
<b>Aims/Background</b> Pulmonary embolism (PE) is a life-threatening condition with significant diagnostic challenges due to high rates of missed or delayed detection. Computed tomography pulmonary angiography (CTPA) is the current standard for diagnosing PE, however, demand for imaging places strain on healthcare systems and increases error rates. This systematic review aims to assess the diagnostic accuracy and clinical applicability of artificial intelligence (AI)-based models for PE detection on CTPA, exploring their potential to enhance diagnostic reliability and efficiency across clinical settings. <b>Methods</b> A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Excerpta Medica Database (EMBASE), Medical Literature Analysis and Retrieval System Online (MEDLINE), Cochrane, PubMed, and Google Scholar were searched for original articles from inception to September 2024. Articles were included if they reported successful AI integration, whether partial or full, alongside CTPA scans for PE detection in patients. <b>Results</b> The literature search identified 919 articles, with 745 remaining after duplicate removal. Following rigorous screening and appraisal aligned with inclusion and exclusion criteria, 12 studies were included in the final analysis. A total of three primary AI modalities emerged: convolutional neural networks (CNNs), segmentation models, and natural language processing (NLP), collectively used in the analysis of 341,112 radiographic images. CNNs were the most frequently applied modality in this review. Models such as AdaBoost and EmbNet have demonstrated high sensitivity, with EmbNet achieving 88-90.9% per scan and reducing false positives to 0.45 per scan. <b>Conclusion</b> AI shows significant promise as a diagnostic tool for identifying PE on CTPA scans, particularly when combined with other forms of clinical data. However, challenges remain, including ensuring generalisability, addressing potential bias, and conducting rigorous external validation. Variability in study methodologies and the lack of standardised reporting of key metrics complicate comparisons. Future research must focus on refining models, improving peripheral emboli detection, and validating performance across diverse settings to realise AI's potential fully.

Efficacy of an Automated Pulmonary Embolism (PE) Detection Algorithm on Routine Contrast-Enhanced Chest CT Imaging for Non-PE Studies.

Troutt HR, Huynh KN, Joshi A, Ling J, Refugio S, Cramer S, Lopez J, Wei K, Imanzadeh A, Chow DS

pubmed logopapersJun 25 2025
The urgency to accelerate PE management and minimize patient risk has driven the development of artificial intelligence (AI) algorithms designed to provide a swift and accurate diagnosis in dedicated chest imaging (computed tomography pulmonary angiogram; CTPA) for suspected PE; however, the accuracy of AI algorithms in the detection of incidental PE in non-dedicated CT imaging studies remains unclear and untested. This study explores the potential for a commercial AI algorithm to identify incidental PE in non-dedicated contrast-enhanced CT chest imaging studies. The Viz PE algorithm was deployed to identify the presence of PE on 130 dedicated and 63 non-dedicated contrast-enhanced CT chest exams. The predictions for non-dedicated contrast-enhanced chest CT imaging studies were 90.48% accurate, with a sensitivity of 0.14 and specificity of 1.00. Our findings reflect that the Viz PE algorithm demonstrated an overall accuracy of 90.16%, with a specificity of 96% and a sensitivity of 41%. Although the high specificity is promising for ruling in PE, the low sensitivity highlights a limitation, as it indicates the algorithm may miss a substantial number of true-positive incidental PEs. This study demonstrates that commercial AI detection tools hold promise as integral support for detecting PE, particularly when there is a strong clinical indication for their use; however, current limitations in sensitivity, especially for incidental cases, underscore the need for ongoing radiologist oversight.

Differentiating adenocarcinoma and squamous cell carcinoma in lung cancer using semi automated segmentation and radiomics.

Vijitha R, Wickramasinghe WMIS, Perera PAS, Jayatissa RMGCSB, Hettiarachchi RT, Alwis HARV

pubmed logopapersJun 24 2025
Adenocarcinoma (AD) and squamous cell carcinoma (SCC) are frequently observed forms of non-small cell lung cancer (NSCLC), playing a significant role in global cancer mortality. This research categorizes NSCLC subtypes by analyzing image details using computer-assisted semi-automatic segmentation and radiomic features in model development. This study includes 80 patients with 50 AD and 30 SCC which were analyzed using 3D Slicer software and extracted 107 quantitative radiomic features per patient. After eliminating correlated attributes, LASSO binary logistic regression model and 10-fold cross-validation were used for feature selection. The Shapiro-Wilk test assessed radiomic score normality, and the Mann-Whitney U test compared score distributions. Random Forest (RF) and Support Vector Machine (SVM) classification models were implemented for subtype classification. Receiver-Operator Characteristic (ROC) curves evaluated the radiomics score, showing a moderate predictive ability with training set area under curve (AUC) of 0.679 (95 % CI, 0.541-0.871) and validation set AUC of 0.560 (95 % CI, 0.342-0.778). Rad-Score distributions were normal for AD and not normal for SCC. RF and SVM classification models, which are based on selected features, resulted RF accuracy (95 % CI) of 0.73 and SVM accuracy (95 % CI) of 0.87, with respective AUC values of 0.54 and 0.87. These findings enhance the understanding that the two subtypes of NSCLC can be differentiated. The study demonstrated radiomic analysis improves diagnostic accuracy and offers a non-invasive alternative. However, the AUCs and ROC curves for the machine learning models must be critically evaluated to ensure clinical acceptability. If robust, these models could reduce the need for biopsies and enhance personalized treatment planning. Further research is needed to validate these findings and integrate radiomics into NSCLC clinical practice.

Non-invasive prediction of NSCLC immunotherapy efficacy and tumor microenvironment through unsupervised machine learning-driven CT Radiomic subtypes: a multi-cohort study.

Guo Y, Gong B, Li Y, Mo P, Chen Y, Fan Q, Sun Q, Miao L, Li Y, Liu Y, Tan W, Yang L, Zheng C

pubmed logopapersJun 24 2025
Radiomics analyzes quantitative features from medical images to reveal tumor heterogeneity, offering new insights for diagnosis, prognosis, and treatment prediction. This study explored radiomics based biomarkers to predict immunotherapy response and its association with the tumor microenvironment in non-small cell lung cancer (NSCLC) using unsupervised machine learning models derived from CT imaging. This study included 1539 NSCLC patients from seven independent cohorts. For 1834 radiomic features extracted from 869 NSCLC patients, K-means unsupervised clustering was applied to identify radiomic subtypes. A random forest model extended subtype classification to external cohorts, model accuracy, sensitivity, and specificity were evaluated. By conducting bulk RNA sequencing (RNA-seq) and single-cell transcriptome sequencing (scRNA-seq) of tumors, the immune microenvironment characteristics of tumors can be obtained to evaluate the association between radiomic subtypes and immunotherapy efficacy, immune scores, and immune cells infiltration. Unsupervised clustering stratified NSCLC patients into two subtypes (Cluster 1 and Cluster 2). Principal component analysis confirmed significant distinctions between subtypes across all cohorts. Cluster 2 exhibited significantly longer median overall survival (35 vs. 30 months, P = 0.006) and progression-free survival (19 vs. 16 months, P = 0.020) compared to Cluster 1. Multivariate Cox regression identified radiomic subtype as an independent predictor of overall survival (HR: 0.738, 95% CI 0.583-0.935, P = 0.012), validated in two external cohorts. Bulk RNA seq showed elevated interaction signaling and immune scores in Cluster 2 and scRNA-seq demonstrated higher proportions of T cells, B cells, and NK cells in Cluster 2. This study establishes a radiomic subtype associated with NSCLC immunotherapy efficacy and tumor immune microenvironment. The findings provide a non-invasive tool for personalized treatment, enabling early identification of immunotherapy-responsive patients and optimized therapeutic strategies.

Diagnostic Performance of Universal versus Stratified Computer-Aided Detection Thresholds for Chest X-Ray-Based Tuberculosis Screening

Sung, J., Kitonsa, P. J., Nalutaaya, A., Isooba, D., Birabwa, S., Ndyabayunga, K., Okura, R., Magezi, J., Nantale, D., Mugabi, I., Nakiiza, V., Dowdy, D. W., Katamba, A., Kendall, E. A.

medrxiv logopreprintJun 24 2025
BackgroundComputer-aided detection (CAD) software analyzes chest X-rays for features suggestive of tuberculosis (TB) and provides a numeric abnormality score. However, estimates of CAD accuracy for TB screening are hindered by the lack of confirmatory data among people with lower CAD scores, including those without symptoms. Additionally, the appropriate CAD score thresholds for obtaining further testing may vary according to population and client characteristics. MethodsWe screened for TB in Ugandan individuals aged [&ge;]15 years using portable chest X-rays with CAD (qXR v3). Participants were offered screening regardless of their symptoms. Those with X-ray scores above a threshold of 0.1 (range, 0 - 1) were asked to provide sputum for Xpert Ultra testing. We estimated the diagnostic accuracy of CAD for detecting Xpert-positive TB when using the same threshold for all individuals (under different assumptions about TB prevalence among people with X-ray scores <0.1), and compared this estimate to age- and/or sex-stratified approaches. FindingsOf 52,835 participants screened for TB using CAD, 8,949 (16.9%) had X-ray scores [&ge;]0.1. Of 7,219 participants with valid Xpert Ultra results, 382 (5.3%) were Xpert-positive, including 81 with trace results. Assuming 0.1% of participants with X-ray scores <0.1 would have been Xpert-positive if tested, qXR had an estimated AUC of 0.920 (95% confidence interval 0.898-0.941) for Xpert-positive TB. Stratifying CAD thresholds according to age and sex improved accuracy; for example, at 96.1% specificity, estimated sensitivity was 75.0% for a universal threshold (of [&ge;]0.65) versus 76.9% for thresholds stratified by age and sex (p=0.046). InterpretationThe accuracy of CAD for TB screening among all screening participants, including those without symptoms or abnormal chest X-rays, is higher than previously estimated. Stratifying CAD thresholds based on client characteristics such as age and sex could further improve accuracy, enabling a more effective and personalized approach to TB screening. FundingNational Institutes of Health Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe World Health Organization (WHO) has endorsed computer-aided detection (CAD) as a screening tool for tuberculosis (TB), but the appropriate CAD score that triggers further diagnostic evaluation for tuberculosis varies by population. The WHO recommends determining the appropriate CAD threshold for specific settings and population and considering unique thresholds for specific populations, including older age groups, among whom CAD may perform poorly. We performed a PubMed literature search for articles published until September 9, 2024, using the search terms "tuberculosis" AND ("computer-aided detection" OR "computer aided detection" OR "CAD" OR "computer-aided reading" OR "computer aided reading" OR "artificial intelligence"), which resulted in 704 articles. Among them, we identified studies that evaluated the performance of CAD for tuberculosis screening and additionally reviewed relevant references. Most prior studies reported area under the curves (AUC) ranging from 0.76 to 0.88 but limited their evaluations to individuals with symptoms or abnormal chest X-rays. Some prior studies identified subgroups (including older individuals and people with prior TB) among whom CAD had lower-than-average AUCs, and authors discussed how the prevalence of such characteristics could affect the optimal value of a population-wide CAD threshold; however, none estimated the accuracy that could be gained with adjusting CAD thresholds between individuals based on personal characteristics. Added value of this studyIn this study, all consenting individuals in a high-prevalence setting were offered chest X-ray screening, regardless of symptoms, if they were [&ge;]15 years old, not pregnant, and not on TB treatment. A very low CAD score cutoff (qXR v3 score of 0.1 on a 0-1 scale) was used to select individuals for confirmatory sputum molecular testing, enabling the detection of radiographically mild forms of TB and facilitating comparisons of diagnostic accuracy at different CAD thresholds. With this more expansive, symptom-neutral evaluation of CAD, we estimated an AUC of 0.920, and we found that the qXR v3 threshold needed to decrease to under 0.1 to meet the WHO target product profile goal of [&ge;]90% sensitivity and [&ge;]70% specificity. Compared to using the same thresholds for all participants, adjusting CAD thresholds by age and sex strata resulted in a 1 to 2% increase in sensitivity without affecting specificity. Implications of all the available evidenceTo obtain high sensitivity with CAD screening in high-prevalence settings, low score thresholds may be needed. However, countries with a high burden of TB often do not have sufficient resources to test all individuals above a low threshold. In such settings, adjusting CAD thresholds based on individual characteristics associated with TB prevalence (e.g., male sex) and those associated with false-positive X-ray results (e.g., old age) can potentially improve the efficiency of TB screening programs.

From BERT to generative AI - Comparing encoder-only vs. large language models in a cohort of lung cancer patients for named entity recognition in unstructured medical reports.

Arzideh K, Schäfer H, Allende-Cid H, Baldini G, Hilser T, Idrissi-Yaghir A, Laue K, Chakraborty N, Doll N, Antweiler D, Klug K, Beck N, Giesselbach S, Friedrich CM, Nensa F, Schuler M, Hosch R

pubmed logopapersJun 23 2025
Extracting clinical entities from unstructured medical documents is critical for improving clinical decision support and documentation workflows. This study examines the performance of various encoder and decoder models trained for Named Entity Recognition (NER) of clinical parameters in pathology and radiology reports, highlighting the applicability of Large Language Models (LLMs) for this task. Three NER methods were evaluated: (1) flat NER using transformer-based models, (2) nested NER with a multi-task learning setup, and (3) instruction-based NER utilizing LLMs. A dataset of 2013 pathology reports and 413 radiology reports, annotated by medical students, was used for training and testing. The performance of encoder-based NER models (flat and nested) was superior to that of LLM-based approaches. The best-performing flat NER models achieved F1-scores of 0.87-0.88 on pathology reports and up to 0.78 on radiology reports, while nested NER models performed slightly lower. In contrast, multiple LLMs, despite achieving high precision, yielded significantly lower F1-scores (ranging from 0.18 to 0.30) due to poor recall. A contributing factor appears to be that these LLMs produce fewer but more accurate entities, suggesting they become overly conservative when generating outputs. LLMs in their current form are unsuitable for comprehensive entity extraction tasks in clinical domains, particularly when faced with a high number of entity types per document, though instructing them to return more entities in subsequent refinements may improve recall. Additionally, their computational overhead does not provide proportional performance gains. Encoder-based NER models, particularly those pre-trained on biomedical data, remain the preferred choice for extracting information from unstructured medical documents.

Enhancing Lung Cancer Diagnosis: An Optimization-Driven Deep Learning Approach with CT Imaging.

Lakshminarasimha K, Priyeshkumar AT, Karthikeyan M, Sakthivel R

pubmed logopapersJun 23 2025
Lung cancer (LC) remains a leading cause of mortality worldwide, affecting individuals across all genders and age groups. Early and accurate diagnosis is critical for effective treatment and improved survival rates. Computed Tomography (CT) imaging is widely used for LC detection and classification. However, manual identification can be time-consuming and error-prone due to the visual similarities among various LC types. Deep learning (DL) has shown significant promise in medical image analysis. Although numerous studies have investigated LC detection using deep learning techniques, the effective extraction of highly correlated features remains a significant challenge, thereby limiting diagnostic accuracy. Furthermore, most existing models encounter substantial computational complexity and find it difficult to efficiently handle the high-dimensional nature of CT images. This study introduces an optimized CBAM-EfficientNet model to enhance feature extraction and improve LC classification. EfficientNet is utilized to reduce computational complexity, while the Convolutional Block Attention Module (CBAM) emphasizes essential spatial and channel features. Additionally, optimization algorithms including Gray Wolf Optimization (GWO), Whale Optimization (WO), and the Bat Algorithm (BA) are applied to fine-tune hyperparameters and boost predictive accuracy. The proposed model, integrated with different optimization strategies, is evaluated on two benchmark datasets. The GWO-based CBAM-EfficientNet achieves outstanding classification accuracies of 99.81% and 99.25% on the Lung-PET-CT-Dx and LIDC-IDRI datasets, respectively. Following GWO, the BA-based CBAM-EfficientNet achieves 99.44% and 98.75% accuracy on the same datasets. Comparative analysis highlights the superiority of the proposed model over existing approaches, demonstrating strong potential for reliable and automated LC diagnosis. Its lightweight architecture also supports real-time implementation, offering valuable assistance to radiologists in high-demand clinical environments.

Chest X-ray Foundation Model with Global and Local Representations Integration.

Yang Z, Xu X, Zhang J, Wang G, Kalra MK, Yan P

pubmed logopapersJun 23 2025
Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrained CheXFound on a curated CXR-987K dataset, comprising over approximately 987K unique CXRs from 12 publicly available sources. We propose a Global and Local Representations Integration (GLoRI) head for downstream adaptations, by incorporating fine- and coarse-grained disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results showed that CheXFound outperformed state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibited superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on downstream tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation, mortality prediction, malpositioned tube detection, and anatomical structure segmentation. The above results demonstrate CheXFound's strong generalization capabilities, which will enable diverse downstream adaptations with improved label efficiency in future applications. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.

[Incidental pulmonary nodules on CT imaging: what to do?].

van der Heijden EHFM, Snoeren M, Jacobs C

pubmed logopapersJun 23 2025
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. Careful, and systematic evaluation of these findings in imaging is needed to determine the risk of malignancy, based on imaging characteristics, patient factors like smoking habits, prior cancers or family history, and growth rate preferably determined by volume measurements. Once the risk of malignancy is increased, minimal invasive image guided biopsy is warranted, preferably by navigation bronchoscopy. We present two cases to illustrate this clinical workup: one case with a benign solitary pulmonary nodule, and a second case with multiple ground glass opacities, diagnosed as synchronous primary adenocarcinomas of the lung. This is followed by a review of the current status of computer and artificial intelligence aided diagnostic support and clinical workflow optimization.
Page 44 of 66652 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.