Sort by:
Page 412 of 4524519 results

Non-Invasive Tumor Budding Evaluation and Correlation with Treatment Response in Bladder Cancer: A Multi-Center Cohort Study.

Li X, Zou C, Wang C, Chang C, Lin Y, Liang S, Zheng H, Liu L, Deng K, Zhang L, Liu B, Gao M, Cai P, Lao J, Xu L, Wu D, Zhao X, Wu X, Li X, Luo Y, Zhong W, Lin T

pubmed logopapersMay 20 2025
The clinical benefits of neoadjuvant chemoimmunotherapy (NACI) are demonstrated in patients with bladder cancer (BCa); however, more than half fail to achieve a pathological complete response (pCR). This study utilizes multi-center cohorts of 2322 patients with pathologically diagnosed BCa, collected between January 1, 2014, and December 31, 2023, to explore the correlation between tumor budding (TB) status and NACI response and disease prognosis. A deep learning model is developed to noninvasively evaluate TB status based on CT images. The deep learning model accurately predicts the TB status, with area under the curve values of 0.932 (95% confidence interval: 0.898-0.965) in the training cohort, 0.944 (0.897-0.991) in the internal validation cohort, 0.882 (0.832-0.933) in external validation cohort 1, 0.944 (0.908-0.981) in the external validation cohort 2, and 0.854 (0.739-0.970) in the NACI validation cohort. Patients predicted to have a high TB status exhibit a worse prognosis (p < 0.05) and a lower pCR rate of 25.9% (7/20) than those predicted to have a low TB status (pCR rate: 73.9% [17/23]; p < 0.001). Hence, this model may be a reliable, noninvasive tool for predicting TB status, aiding clinicians in prognosis assessment and NACI strategy formulation.

Deep learning-based radiomics and machine learning for prognostic assessment in IDH-wildtype glioblastoma after maximal safe surgical resection: a multicenter study.

Liu J, Jiang S, Wu Y, Zou R, Bao Y, Wang N, Tu J, Xiong J, Liu Y, Li Y

pubmed logopapersMay 20 2025
Glioblastoma (GBM) is a highly aggressive brain tumor with poor prognosis. This study aimed to construct and validate a radiomics-based machine learning model for predicting overall survival (OS) in IDH-wildtype GBM after maximal safe surgical resection using magnetic resonance imaging. A total of 582 patients were retrospectively enrolled, comprising 301 in the training cohort, 128 in the internal validation cohort, and 153 in the external validation cohort. Volumes of interest (VOIs) from contrast-enhanced T1-weighted imaging (CE-T1WI) were segmented into three regions: contrast-enhancing tumor, necrotic non-enhancing core, and peritumoral edema using an ResNet-based segmentation network. A total of 4,227 radiomic features were extracted and filtered using LASSO-Cox regression to identify signatures. The prognostic model was constructed using the Mime prediction framework, categorizing patients into high- and low-risk groups based on the median OS. Model performance was assessed using the concordance index (CI) and Kaplan-Meier survival analysis. Independent prognostic factors were identified through multivariable Cox regression analysis, and a nomogram was developed for individualized risk assessment. The Step Cox [backward] + RSF model achieved CIs of 0.89, 0.81, and 0.76 in the training, internal and external validation cohorts. Log-rank tests demonstrated significant survival differences between high- and low-risk groups across all cohorts (P < 0.05). Multivariate Cox analysis identified age (HR: 1.022; 95% CI: 0.979, 1.009, P < 0.05), KPS score (HR: 0.970, 95% CI: 0.960, 0.978, P < 0.05), rad-scores of the necrotic non-enhancing core (HR: 8.164; 95% CI: 2.439, 27.331, P < 0.05), and peritumoral edema (HR: 3.748; 95% CI: 1.212, 11.594, P < 0.05) as independent predictors of OS. A nomogram integrating these predictors provided individualized risk assessment. This deep learning segmentation-based radiomics model demonstrated robust performance in predicting OS in GBM after maximal safe surgical resection. By incorporating radiomic signatures and advanced machine learning algorithms, it offers a non-invasive tool for personalized prognostic assessment and supports clinical decision-making.

Challenges in Using Deep Neural Networks Across Multiple Readers in Delineating Prostate Gland Anatomy.

Abudalou S, Choi J, Gage K, Pow-Sang J, Yilmaz Y, Balagurunathan Y

pubmed logopapersMay 20 2025
Deep learning methods provide enormous promise in automating manually intense tasks such as medical image segmentation and provide workflow assistance to clinical experts. Deep neural networks (DNN) require a significant amount of training examples and a variety of expert opinions to capture the nuances and the context, a challenging proposition in oncological studies (H. Wang et al., Nature, vol. 620, no. 7972, pp. 47-60, Aug 2023). Inter-reader variability among clinical experts is a real-world problem that severely impacts the generalization of DNN reproducibility. This study proposes quantifying the variability in DNN performance using expert opinions and exploring strategies to train the network and adapt between expert opinions. We address the inter-reader variability problem in the context of prostate gland segmentation using a well-studied DNN, the 3D U-Net model. Reference data includes magnetic resonance imaging (MRI, T2-weighted) with prostate glandular anatomy annotations from two expert readers (R#1, n = 342 and R#2, n = 204). 3D U-Net was trained and tested with individual expert examples (R#1 and R#2) and had an average Dice coefficient of 0.825 (CI, [0.81 0.84]) and 0.85 (CI, [0.82 0.88]), respectively. Combined training with a representative cohort proportion (R#1, n = 100 and R#2, n = 150) yielded enhanced model reproducibility across readers, achieving an average test Dice coefficient of 0.863 (CI, [0.85 0.87]) for R#1 and 0.869 (CI, [0.87 0.88]) for R#2. We re-evaluated the model performance across the gland volumes (large, small) and found improved performance for large gland size with an average Dice coefficient to be at 0.846 [CI, 0.82 0.87] and 0.872 [CI, 0.86 0.89] for R#1 and R#2, respectively, estimated using fivefold cross-validation. Performance for small gland sizes diminished with average Dice of 0.8 [0.79, 0.82] and 0.8 [0.79, 0.83] for R#1 and R#2, respectively.

Feasibility of an AI-driven Classification of Tuberous Breast Deformity: A Siamese Network Approach with a Continuous Tuberosity Score.

Vaccari S, Paderno A, Furlan S, Cavallero MF, Lupacchini AM, Di Giuli R, Klinger M, Klinger F, Vinci V

pubmed logopapersMay 20 2025
Tuberous breast deformity (TBD) is a congenital condition characterized by constriction of the breast base, parenchymal hypoplasia, and areolar herniation. The absence of a universally accepted classification system complicates diagnosis and surgical planning, leading to variability in clinical outcomes. Artificial intelligence (AI) has emerged as a powerful adjunct in medical imaging, enabling objective, reproducible, and data-driven diagnostic assessments. This study introduces an AI-driven diagnostic tool for tuberous breast deformity (TBD) classification using a Siamese Network trained on paired frontal and lateral images. Additionally, the model generates a continuous Tuberosity Score (ranging from 0 to 1) based on embedding vector distances, offering an objective measure to enhance surgical planning and improved clinical outcomes. A dataset of 200 expertly classified frontal and lateral breast images (100 tuberous, 100 non-tuberous) was used to train a Siamese Network with contrastive loss. The model extracted high-dimensional feature embeddings to differentiate tuberous from non-tuberous breasts. Five-fold cross-validation ensured robust performance evaluation. Performance metrics included accuracy, precision, recall, and F1-score. Visualization techniques, such as t-SNE clustering and occlusion sensitivity mapping, were employed to interpret model decisions. The model achieved an average accuracy of 96.2% ± 5.5%, with balanced precision and recall. The Tuberosity Score, derived from the Euclidean distance between embeddings, provided a continuous measure of deformity severity, correlating well with clinical assessments. This AI-based framework offers an objective, high-accuracy classification system for TBD. The Tuberosity Score enhances diagnostic precision, potentially aiding in surgical planning and improving patient outcomes.

Preoperative DBT-based radiomics for predicting axillary lymph node metastasis in breast cancer: a multi-center study.

He S, Deng B, Chen J, Li J, Wang X, Li G, Long S, Wan J, Zhang Y

pubmed logopapersMay 19 2025
In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. Sentinel lymph node biopsy (SLND), as an alternative, is less invasive but still poses a risk of overtreatment. In recent years, digital breast tomosynthesis (DBT) technology has emerged as a new precise diagnostic tool for breast cancer, leveraging its high detection capability for lesions obscured by dense glandular tissue. This multi-center study evaluates the feasibility of preoperative DBT-based radiomics, using tumor and peritumoral features, to predict ALN metastasis in breast cancer. We retrospectively collected DBT imaging data from 536 preoperative breast cancer patients across two centers. Specifically, 390 cases were from one Hospital, and 146 cases were from another Hospital. These data were assigned to internal training and external validation sets, respectively. We performed 3D region of interest (ROI) delineation on the cranio-caudal (CC) and mediolateral oblique (MLO) views of DBT images and extracted radiomic features. Using methods such as analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), we selected radiomic features extracted from the tumor and its surrounding 3 mm, 5 mm, and 10 mm regions, and constructed a radiomic feature set. We then developed a combined model that includes the optimal radiomic features and clinical pathological factors. The performance of the combined model was evaluated using the area under the curve (AUC), and it was directly compared with the diagnostic results of radiologists. The results showed that the AUC of the radiomic features from the surrounding regions of the tumor were generally lower than those from the tumor itself. Among them, the Signature<sub>tuomor+10 mm</sub> model performed best, achieving an AUC of 0.806 using a logistic regression (LR) classifier to generate the RadScore.The nomogram incorporating both Ki67 and RadScore demonstrated a slightly higher AUC (0.813) compared to the Signature<sub>tuomor+10 mm</sub> model alone (0.806). By integrating relevant clinical information, the nomogram enhances potential clinical utility. Moreover, it outperformed radiologists' assessments in predictive accuracy, highlighting its added value in clinical decision-making. Radiomics based on DBT imaging of the tumor and surrounding regions can provide a non-invasive auxiliary tool to guide treatment strategies for ALN metastasis in breast cancer. Not applicable.

Multiple deep learning models based on MRI images in discriminating glioblastoma from solitary brain metastases: a multicentre study.

Kong C, Yan D, Liu K, Yin Y, Ma C

pubmed logopapersMay 19 2025
Development of a deep learning model for accurate preoperative identification of glioblastoma and solitary brain metastases by combining multi-centre and multi-sequence magnetic resonance images and comparison of the performance of different deep learning models. Clinical data and MR images of a total of 236 patients with pathologically confirmed glioblastoma and single brain metastases were retrospectively collected from January 2019 to May 2024 at Provincial Hospital of Shandong First Medical University, and the data were randomly divided into a training set and a test set according to the ratio of 8:2, in which the training set contained 197 cases and the test set contained 39 cases; the images were preprocessed and labeled with the tumor regions. The images were pre-processed and labeled with tumor regions, and different MRI sequences were input individually or in combination to train the deep learning model 3D ResNet-18, and the optimal sequence combinations were obtained by five-fold cross-validation enhancement of the data inputs and training of the deep learning models 3D Vision Transformer (3D Vit), 3D DenseNet, and 3D VGG; the working characteristic curves (ROCs) of subjects were plotted, and the area under the curve (AUC) was calculated. The area under the curve (AUC), accuracy, precision, recall and F1 score were used to evaluate the discriminative performance of the models. In addition, 48 patients with glioblastoma and single brain metastases from January 2020 to December 2022 were collected from the Affiliated Cancer Hospital of Shandong First Medical University as an external test set to compare the discriminative performance, robustness and generalization ability of the four deep learning models. In the comparison of the discriminative effect of different MRI sequences, the three sequence combinations of T1-CE, T2, and T2-Flair gained discriminative effect, with the accuracy and AUC values of 0.8718 and 0.9305, respectively; after the four deep learning models were inputted into the aforementioned sequence combinations, the accuracy and AUC of the external validation of the 3D ResNet-18 model were 0.8125, respectively, 0.8899, all of which are the highest among all models. A combination of multi-sequence MR images and a deep learning model can efficiently identify glioblastoma and solitary brain metastases preoperatively, and the deep learning model 3D ResNet-18 has the highest efficacy in identifying the two types of tumours.

Prediction of prognosis of immune checkpoint inhibitors combined with anti-angiogenic agents for unresectable hepatocellular carcinoma by machine learning-based radiomics.

Xu X, Jiang X, Jiang H, Yuan X, Zhao M, Wang Y, Chen G, Li G, Duan Y

pubmed logopapersMay 19 2025
This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging (MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not been previously explored using MRI-based radiomics. 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The optimal calculation method was selected by comparing the Harrell's concordance index (C-index) values. The Rad-score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to assess the forecast ability of the risk models. The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient stratification and personalized treatment strategies. Based on the risk level, the participants were classified into two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant difference between the groups (P < 0.01). The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective clinical outcomes.

Deep learning models based on multiparametric magnetic resonance imaging and clinical parameters for identifying synchronous liver metastases from rectal cancer.

Sun J, Wu PY, Shen F, Chen X, She J, Luo M, Feng F, Zheng D

pubmed logopapersMay 19 2025
To establish and validate deep learning (DL) models based on pre-treatment multiparametric magnetic resonance imaging (MRI) images of primary rectal cancer and basic clinical data for the prediction of synchronous liver metastases (SLM) in patients with Rectal cancer (RC). In this retrospective study, 176 and 31 patients with RC who underwent multiparametric MRI from two centers were enrolled in the primary and external validation cohorts, respectively. Clinical factors, including sex, primary tumor site, CEA level, and CA199 level were assessed. A clinical feature (CF) model was first developed by multivariate logistic regression, then two residual network DL models were constructed based on multiparametric MRI of primary cancer with or without CF incorporation. Finally, the SLM prediction models were validated by 5-fold cross-validation and external validation. The performance of the models was evaluated by decision curve analysis (DCA) and receiver operating characteristic (ROC) analysis. Among three SLM prediction models, the Combined DL model integrating primary tumor MRI and basic clinical data achieved the best performance (AUC = 0.887 in primary study cohort; AUC = 0.876 in the external validation cohort). In the primary study cohort, the CF model, MRI DL model, and Combined DL model achieved AUCs of 0.816 (95% CI: 0.750, 0.881), 0.788 (95% CI: 0.720, 0.857), and 0.887 (95% CI: 0.834, 0.940) respectively. In the external validation cohort, the CF model, DL model without CF, and DL model with CF achieved AUCs of 0.824 (95% CI: 0.664, 0.984), 0.662 (95% CI: 0.461, 0.863), and 0.876 (95% CI: 0.728, 1.000), respectively. The combined DL model demonstrates promising potential to predict SLM in patients with RC, thereby making individualized imaging test strategies. Accurate synchronous liver metastasis (SLM) risk stratification is important for treatment planning and prognosis improvement. The proposed DL signature may be employed to better understand an individual patient's SLM risk, aiding in treatment planning and selection of further imaging examinations to personalize clinical decisions. Not applicable.

Diagnosis of early idiopathic pulmonary fibrosis: current status and future perspective.

Wang X, Xia X, Hou Y, Zhang H, Han W, Sun J, Li F

pubmed logopapersMay 19 2025
The standard approach to diagnosing idiopathic pulmonary fibrosis (IPF) includes identifying the usual interstitial pneumonia (UIP) pattern via high resolution computed tomography (HRCT) or lung biopsy and excluding known causes of interstitial lung disease (ILD). However, limitations of manual interpretation of lung imaging, along with other reasons such as lack of relevant knowledge and non-specific symptoms have hindered the timely diagnosis of IPF. This review proposes the definition of early IPF, emphasizes the diagnostic urgency of early IPF, and highlights current diagnostic strategies and future prospects for early IPF. The integration of artificial intelligence (AI), specifically machine learning (ML) and deep learning (DL), is revolutionizing the diagnostic procedure of early IPF by standardizing and accelerating the interpretation of thoracic images. Innovative bronchoscopic techniques such as transbronchial lung cryobiopsy (TBLC), genomic classifier, and endobronchial optical coherence tomography (EB-OCT) provide less invasive diagnostic alternatives. In addition, chest auscultation, serum biomarkers, and susceptibility genes are pivotal for the indication of early diagnosis. Ongoing research is essential for refining diagnostic methods and treatment strategies for early IPF.

Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children.

Tsai ML, Hsieh KL, Liu YL, Yang YS, Chang H, Wong TT, Peng SJ

pubmed logopapersMay 19 2025
Understanding the impact of epilepsy on pediatric brain tumors is crucial to diagnostic precision and optimal treatment selection. This study investigated MRI radiomics features, tumor location, voxel-based morphometry (VBM) for gray matter density, and tumor volumetry to differentiate between children with low grade glioma (LGG)-associated epilepsies and those without, and further identified key radiomics features for predicting of epilepsy risk in children with supratentorial LGG to construct an epilepsy prediction model. A total of 206 radiomics features of tumors and voxel-based morphometric analysis of tumor location features were extracted from T2-FLAIR images in a primary cohort of 48 children with LGG with epilepsy (N = 23) or without epilepsy (N = 25), prior to surgery. Feature selection was performed using the minimum redundancy maximum relevance algorithm, and leave-one-out cross-validation was applied to assess the predictive performance of radiomics and tumor location signatures in differentiating epilepsy-associated LGG from non-epilepsy cases. Voxel-based morphometric analysis showed significant positive t-scores within bilateral temporal cortex and negative t-scores in basal ganglia between epilepsy and non-epilepsy groups. Eight radiomics features were identified as significant predictors of epilepsy in LGG, encompassing characteristics of 2 locations, 2 shapes, 1 image gray scale intensity, and 3 textures. The most important predictor was temporal lobe involvement, followed by high dependence high grey level emphasis, elongation, area density, information correlation 1, midbrain and intensity range. The Linear Support Vector Machine (SVM) model yielded the best prediction performance, when implemented with a combination of radiomics features and tumor location features, as evidenced by the following metrics: precision (0.955), recall (0.913), specificity (0.960), accuracy (0.938), F-1 score (0.933), and area under curve (AUC) (0.950). Our findings demonstrated the efficacy of machine learning models based on radiomics features and voxel-based anatomical locations in predicting the risk of epilepsy in supratentorial LGG. This model provides a highly accurate tool for distinguishing epilepsy-associated LGG in children, supporting precise treatment planning. Not applicable.
Page 412 of 4524519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.