Sort by:
Page 41 of 53522 results

Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction

Fengting Zhang, Boxu Liang, Qinghao Liu, Min Liu, Xiang Chen, Yaonan Wang

arxiv logopreprintMay 21 2025
Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.

Performance of multimodal prediction models for intracerebral hemorrhage outcomes using real-world data.

Matsumoto K, Suzuki M, Ishihara K, Tokunaga K, Matsuda K, Chen J, Yamashiro S, Soejima H, Nakashima N, Kamouchi M

pubmed logopapersMay 21 2025
We aimed to develop and validate multimodal models integrating computed tomography (CT) images, text and tabular clinical data to predict poor functional outcomes and in-hospital mortality in patients with intracerebral hemorrhage (ICH). These models were designed to assist non-specialists in emergency settings with limited access to stroke specialists. A retrospective analysis of 527 patients with ICH admitted to a Japanese tertiary hospital between April 2019 and February 2022 was conducted. Deep learning techniques were used to extract features from three-dimensional CT images and unstructured data, which were then combined with tabular data to develop an L1-regularized logistic regression model to predict poor functional outcomes (modified Rankin scale score 3-6) and in-hospital mortality. The model's performance was evaluated by assessing discrimination metrics, calibration plots, and decision curve analysis (DCA) using temporal validation data. The multimodal model utilizing both imaging and text data, such as medical interviews, exhibited the highest performance in predicting poor functional outcomes. In contrast, the model that combined imaging with tabular data, including physiological and laboratory results, demonstrated the best predictive performance for in-hospital mortality. These models exhibited high discriminative performance, with areas under the receiver operating curve (AUROCs) of 0.86 (95% CI: 0.79-0.92) and 0.91 (95% CI: 0.84-0.96) for poor functional outcomes and in-hospital mortality, respectively. Calibration was satisfactory for predicting poor functional outcomes, but requires refinement for mortality prediction. The models performed similar to or better than conventional risk scores, and DCA curves supported their clinical utility. Multimodal prediction models have the potential to aid non-specialists in making informed decisions regarding ICH cases in emergency departments as part of clinical decision support systems. Enhancing real-world data infrastructure and improving model calibration are essential for successful implementation in clinical practice.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.

Multi-modal Integration Analysis of Alzheimer's Disease Using Large Language Models and Knowledge Graphs

Kanan Kiguchi, Yunhao Tu, Katsuhiro Ajito, Fady Alnajjar, Kazuyuki Murase

arxiv logopreprintMay 21 2025
We propose a novel framework for integrating fragmented multi-modal data in Alzheimer's disease (AD) research using large language models (LLMs) and knowledge graphs. While traditional multimodal analysis requires matched patient IDs across datasets, our approach demonstrates population-level integration of MRI, gene expression, biomarkers, EEG, and clinical indicators from independent cohorts. Statistical analysis identified significant features in each modality, which were connected as nodes in a knowledge graph. LLMs then analyzed the graph to extract potential correlations and generate hypotheses in natural language. This approach revealed several novel relationships, including a potential pathway linking metabolic risk factors to tau protein abnormalities via neuroinflammation (r>0.6, p<0.001), and unexpected correlations between frontal EEG channels and specific gene expression profiles (r=0.42-0.58, p<0.01). Cross-validation with independent datasets confirmed the robustness of major findings, with consistent effect sizes across cohorts (variance <15%). The reproducibility of these findings was further supported by expert review (Cohen's k=0.82) and computational validation. Our framework enables cross modal integration at a conceptual level without requiring patient ID matching, offering new possibilities for understanding AD pathology through fragmented data reuse and generating testable hypotheses for future research.

Multi-modal Integration Analysis of Alzheimer's Disease Using Large Language Models and Knowledge Graphs

Kanan Kiguchi, Yunhao Tu, Katsuhiro Ajito, Fady Alnajjar, Kazuyuki Murase

arxiv logopreprintMay 21 2025
We propose a novel framework for integrating fragmented multi-modal data in Alzheimer's disease (AD) research using large language models (LLMs) and knowledge graphs. While traditional multimodal analysis requires matched patient IDs across datasets, our approach demonstrates population-level integration of MRI, gene expression, biomarkers, EEG, and clinical indicators from independent cohorts. Statistical analysis identified significant features in each modality, which were connected as nodes in a knowledge graph. LLMs then analyzed the graph to extract potential correlations and generate hypotheses in natural language. This approach revealed several novel relationships, including a potential pathway linking metabolic risk factors to tau protein abnormalities via neuroinflammation (r>0.6, p<0.001), and unexpected correlations between frontal EEG channels and specific gene expression profiles (r=0.42-0.58, p<0.01). Cross-validation with independent datasets confirmed the robustness of major findings, with consistent effect sizes across cohorts (variance <15%). The reproducibility of these findings was further supported by expert review (Cohen's k=0.82) and computational validation. Our framework enables cross modal integration at a conceptual level without requiring patient ID matching, offering new possibilities for understanding AD pathology through fragmented data reuse and generating testable hypotheses for future research.

An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection

Shuvashis Sarker, Shamim Rahim Refat, Faika Fairuj Preotee, Shifat Islam, Tashreef Muhammad, Mohammad Ashraful Hoque

arxiv logopreprintMay 21 2025
The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.

Predictive machine learning and multimodal data to develop highly sensitive, composite biomarkers of disease progression in Friedreich ataxia.

Saha S, Corben LA, Selvadurai LP, Harding IH, Georgiou-Karistianis N

pubmed logopapersMay 21 2025
Friedreich ataxia (FRDA) is a rare, inherited progressive movement disorder for which there is currently no cure. The field urgently requires more sensitive, objective, and clinically relevant biomarkers to enhance the evaluation of treatment efficacy in clinical trials and to speed up the process of drug discovery. This study pioneers the development of clinically relevant, multidomain, fully objective composite biomarkers of disease severity and progression, using multimodal neuroimaging and background data (i.e., demographic, disease history, genetics). Data from 31 individuals with FRDA and 31 controls from a longitudinal multimodal natural history study IMAGE-FRDA, were included. Using an elasticnet predictive machine learning (ML) regression model, we derived a weighted combination of background, structural MRI, diffusion MRI, and quantitative susceptibility imaging (QSM) measures that predicted Friedreich ataxia rating scale (FARS) with high accuracy (R<sup>2</sup> = 0.79, root mean square error (RMSE) = 13.19). This composite also exhibited strong sensitivity to disease progression over two years (Cohen's d = 1.12), outperforming the sensitivity of the FARS score alone (d = 0.88). The approach was validated using the Scale for the assessment and rating of ataxia (SARA), demonstrating the potential and robustness of ML-derived composites to surpass individual biomarkers and act as complementary or surrogate markers of disease severity and progression. However, further validation, refinement, and the integration of additional data modalities will open up new opportunities for translating these biomarkers into clinical practice and clinical trials for FRDA, as well as other rare neurodegenerative diseases.

XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data

Soyabul Islam Lincoln, Mirza Mohd Shahriar Maswood

arxiv logopreprintMay 20 2025
A common neurodegenerative disease, Alzheimer's disease requires a precise diagnosis and efficient treatment, particularly in light of escalating healthcare expenses and the expanding use of artificial intelligence in medical diagnostics. Many recent studies shows that the combination of brain Magnetic Resonance Imaging (MRI) and deep neural networks have achieved promising results for diagnosing AD. Using deep convolutional neural networks, this paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention. The study assessed the model's performance on four publicly accessible datasets and concentrated on identifying binary and multiclass issues across various categories. This paper also takes into account of the explainability of AD's progression and compared with state-of-the-art methods namely Gradient Class Activation Mapping (GradCAM), Score-CAM, Faster Score-CAM, and XGRADCAM. Our methodology consistently outperforms current approaches, achieving 99.66\% accuracy in 4-class classification, 99.63\% in 3-class classification, and 100\% in binary classification using Kaggle datasets. For Open Access Series of Imaging Studies (OASIS) datasets the accuracies are 99.92\%, 99.90\%, and 99.95\% respectively. The Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) dataset was used for experiments in three planes (axial, sagittal, and coronal) and a combination of all planes. The study achieved accuracies of 99.08\% for axis, 99.85\% for sagittal, 99.5\% for coronal, and 99.17\% for all axis, and 97.79\% and 8.60\% respectively for ADNI-2. The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

arxiv logopreprintMay 20 2025
Brain-to-image decoding has been recently propelled by the progress in generative AI models and the availability of large ultra-high field functional Magnetic Resonance Imaging (fMRI). However, current approaches depend on complicated multi-stage pipelines and preprocessing steps that typically collapse the temporal dimension of brain recordings, thereby limiting time-resolved brain decoders. Here, we introduce Dynadiff (Dynamic Neural Activity Diffusion for Image Reconstruction), a new single-stage diffusion model designed for reconstructing images from dynamically evolving fMRI recordings. Our approach offers three main contributions. First, Dynadiff simplifies training as compared to existing approaches. Second, our model outperforms state-of-the-art models on time-resolved fMRI signals, especially on high-level semantic image reconstruction metrics, while remaining competitive on preprocessed fMRI data that collapse time. Third, this approach allows a precise characterization of the evolution of image representations in brain activity. Overall, this work lays the foundation for time-resolved brain-to-image decoding.

"DCSLK: Combined Large Kernel Shared Convolutional Model with Dynamic Channel Sampling".

Li Z, Luo S, Li H, Li Y

pubmed logopapersMay 20 2025
This study centers around the competition between Convolutional Neural Networks (CNNs) with large convolutional kernels and Vision Transformers in the domain of computer vision, delving deeply into the issues pertaining to parameters and computational complexity that stem from the utilization of large convolutional kernels. Even though the size of the convolutional kernels has been extended up to 51×51, the enhancement of performance has hit a plateau, and moreover, striped convolution incurs a performance degradation. Enlightened by the hierarchical visual processing mechanism inherent in humans, this research innovatively incorporates a shared parameter mechanism for large convolutional kernels. It synergizes the expansion of the receptive field enabled by large convolutional kernels with the extraction of fine-grained features facilitated by small convolutional kernels. To address the surging number of parameters, a meticulously designed parameter sharing mechanism is employed, featuring fine-grained processing in the central region of the convolutional kernel and wide-ranging parameter sharing in the periphery. This not only curtails the parameter count and mitigates the model complexity but also sustains the model's capacity to capture extensive spatial relationships. Additionally, in light of the problems of spatial feature information loss and augmented memory access during the 1×1 convolutional channel compression phase, this study further puts forward a dynamic channel sampling approach, which markedly elevates the accuracy of tumor subregion segmentation. To authenticate the efficacy of the proposed methodology, a comprehensive evaluation has been conducted on three brain tumor segmentation datasets, namely BraTs2020, BraTs2024, and Medical Segmentation Decathlon Brain 2018. The experimental results evince that the proposed model surpasses the current mainstream ConvNet and Transformer architectures across all performance metrics, proffering novel research perspectives and technical stratagems for the realm of medical image segmentation.
Page 41 of 53522 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.