Sort by:
Page 408 of 4524519 results

Right Ventricular Strain as a Key Feature in Interpretable Machine Learning for Identification of Takotsubo Syndrome: A Multicenter CMR-based Study.

Du Z, Hu H, Shen C, Mei J, Feng Y, Huang Y, Chen X, Guo X, Hu Z, Jiang L, Su Y, Biekan J, Lyv L, Chong T, Pan C, Liu K, Ji J, Lu C

pubmed logopapersMay 21 2025
To develop an interpretable machine learning (ML) model based on cardiac magnetic resonance (CMR) multimodal parameters and clinical data to discriminate Takotsubo syndrome (TTS), acute myocardial infarction (AMI), and acute myocarditis (AM), and to further assess the diagnostic value of right ventricular (RV) strain in TTS. This study analyzed CMR and clinical data of 130 patients from three centers. Key features were selected using least absolute shrinkage and selection operator regression and random forest. Data were split into a training cohort and an internal testing cohort (ITC) in the ratio 7:3, with overfitting avoided using leave-one-out cross-validation and bootstrap methods. Nine ML models were evaluated using standard performance metrics, with Shapley additive explanations (SHAP) analysis used for model interpretation. A total of 11 key features were identified. The extreme gradient boosting model showed the best performance, with an area under the curve (AUC) value of 0.94 (95% CI: 0.85-0.97) in the ITC. Right ventricular basal circumferential strain (RVCS-basal) was the most important feature for identifying TTS. Its absolute value was significantly higher in TTS patients than in AMI and AM patients (-9.93%, -5.21%, and -6.18%, respectively, p < 0.001), with values above -6.55% contributing to a diagnosis of TTS. This study developed an interpretable ternary classification ML model for identifying TTS and used SHAP analysis to elucidate the significant value of RVCS-basal in TTS diagnosis. An online calculator (https://lsszxyy.shinyapps.io/XGboost/) based on this model was developed to provide immediate decision support for clinical use.

Machine Learning Derived Blood Input for Dynamic PET Images of Rat Heart

Shubhrangshu Debsarkar, Bijoy Kundu

arxiv logopreprintMay 21 2025
Dynamic FDG PET imaging study of n = 52 rats including 26 control Wistar-Kyoto (WKY) rats and 26 experimental spontaneously hypertensive rats (SHR) were performed using a Siemens microPET and Albira trimodal scanner longitudinally at 1, 2, 3, 5, 9, 12 and 18 months of age. A 15-parameter dual output model correcting for spill over contamination and partial volume effects with peak fitting cost functions was developed for simultaneous estimation of model corrected blood input function (MCIF) and kinetic rate constants for dynamic FDG PET images of rat heart in vivo. Major drawbacks of this model are its dependence on manual annotations for the Image Derived Input Function (IDIF) and manual determination of crucial model parameters to compute MCIF. To overcome these limitations, we performed semi-automated segmentation and then formulated a Long-Short-Term Memory (LSTM) cell network to train and predict MCIF in test data using a concatenation of IDIFs and myocardial inputs and compared them with reference-modeled MCIF. Thresholding along 2D plane slices with two thresholds, with T1 representing high-intensity myocardium, and T2 representing lower-intensity rings, was used to segment the area of the LV blood pool. The resultant IDIF and myocardial TACs were used to compute the corresponding reference (model) MCIF for all data sets. The segmented IDIF and the myocardium formed the input for the LSTM network. A k-fold cross validation structure with a 33:8:11 split and 5 folds was utilized to create the model and evaluate the performance of the LSTM network for all datasets. To overcome the sparseness of data as time steps increase, midpoint interpolation was utilized to increase the density of datapoints beyond time = 10 minutes. The model utilizing midpoint interpolation was able to achieve a 56.4% improvement over previous Mean Squared Error (MSE).

Performance of multimodal prediction models for intracerebral hemorrhage outcomes using real-world data.

Matsumoto K, Suzuki M, Ishihara K, Tokunaga K, Matsuda K, Chen J, Yamashiro S, Soejima H, Nakashima N, Kamouchi M

pubmed logopapersMay 21 2025
We aimed to develop and validate multimodal models integrating computed tomography (CT) images, text and tabular clinical data to predict poor functional outcomes and in-hospital mortality in patients with intracerebral hemorrhage (ICH). These models were designed to assist non-specialists in emergency settings with limited access to stroke specialists. A retrospective analysis of 527 patients with ICH admitted to a Japanese tertiary hospital between April 2019 and February 2022 was conducted. Deep learning techniques were used to extract features from three-dimensional CT images and unstructured data, which were then combined with tabular data to develop an L1-regularized logistic regression model to predict poor functional outcomes (modified Rankin scale score 3-6) and in-hospital mortality. The model's performance was evaluated by assessing discrimination metrics, calibration plots, and decision curve analysis (DCA) using temporal validation data. The multimodal model utilizing both imaging and text data, such as medical interviews, exhibited the highest performance in predicting poor functional outcomes. In contrast, the model that combined imaging with tabular data, including physiological and laboratory results, demonstrated the best predictive performance for in-hospital mortality. These models exhibited high discriminative performance, with areas under the receiver operating curve (AUROCs) of 0.86 (95% CI: 0.79-0.92) and 0.91 (95% CI: 0.84-0.96) for poor functional outcomes and in-hospital mortality, respectively. Calibration was satisfactory for predicting poor functional outcomes, but requires refinement for mortality prediction. The models performed similar to or better than conventional risk scores, and DCA curves supported their clinical utility. Multimodal prediction models have the potential to aid non-specialists in making informed decisions regarding ICH cases in emergency departments as part of clinical decision support systems. Enhancing real-world data infrastructure and improving model calibration are essential for successful implementation in clinical practice.

Predictive machine learning and multimodal data to develop highly sensitive, composite biomarkers of disease progression in Friedreich ataxia.

Saha S, Corben LA, Selvadurai LP, Harding IH, Georgiou-Karistianis N

pubmed logopapersMay 21 2025
Friedreich ataxia (FRDA) is a rare, inherited progressive movement disorder for which there is currently no cure. The field urgently requires more sensitive, objective, and clinically relevant biomarkers to enhance the evaluation of treatment efficacy in clinical trials and to speed up the process of drug discovery. This study pioneers the development of clinically relevant, multidomain, fully objective composite biomarkers of disease severity and progression, using multimodal neuroimaging and background data (i.e., demographic, disease history, genetics). Data from 31 individuals with FRDA and 31 controls from a longitudinal multimodal natural history study IMAGE-FRDA, were included. Using an elasticnet predictive machine learning (ML) regression model, we derived a weighted combination of background, structural MRI, diffusion MRI, and quantitative susceptibility imaging (QSM) measures that predicted Friedreich ataxia rating scale (FARS) with high accuracy (R<sup>2</sup> = 0.79, root mean square error (RMSE) = 13.19). This composite also exhibited strong sensitivity to disease progression over two years (Cohen's d = 1.12), outperforming the sensitivity of the FARS score alone (d = 0.88). The approach was validated using the Scale for the assessment and rating of ataxia (SARA), demonstrating the potential and robustness of ML-derived composites to surpass individual biomarkers and act as complementary or surrogate markers of disease severity and progression. However, further validation, refinement, and the integration of additional data modalities will open up new opportunities for translating these biomarkers into clinical practice and clinical trials for FRDA, as well as other rare neurodegenerative diseases.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.

Multi-modal Integration Analysis of Alzheimer's Disease Using Large Language Models and Knowledge Graphs

Kanan Kiguchi, Yunhao Tu, Katsuhiro Ajito, Fady Alnajjar, Kazuyuki Murase

arxiv logopreprintMay 21 2025
We propose a novel framework for integrating fragmented multi-modal data in Alzheimer's disease (AD) research using large language models (LLMs) and knowledge graphs. While traditional multimodal analysis requires matched patient IDs across datasets, our approach demonstrates population-level integration of MRI, gene expression, biomarkers, EEG, and clinical indicators from independent cohorts. Statistical analysis identified significant features in each modality, which were connected as nodes in a knowledge graph. LLMs then analyzed the graph to extract potential correlations and generate hypotheses in natural language. This approach revealed several novel relationships, including a potential pathway linking metabolic risk factors to tau protein abnormalities via neuroinflammation (r>0.6, p<0.001), and unexpected correlations between frontal EEG channels and specific gene expression profiles (r=0.42-0.58, p<0.01). Cross-validation with independent datasets confirmed the robustness of major findings, with consistent effect sizes across cohorts (variance <15%). The reproducibility of these findings was further supported by expert review (Cohen's k=0.82) and computational validation. Our framework enables cross modal integration at a conceptual level without requiring patient ID matching, offering new possibilities for understanding AD pathology through fragmented data reuse and generating testable hypotheses for future research.

Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models

Frederic Wang, Jonathan I. Tamir

arxiv logopreprintMay 21 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.

Multi-modal Integration Analysis of Alzheimer's Disease Using Large Language Models and Knowledge Graphs

Kanan Kiguchi, Yunhao Tu, Katsuhiro Ajito, Fady Alnajjar, Kazuyuki Murase

arxiv logopreprintMay 21 2025
We propose a novel framework for integrating fragmented multi-modal data in Alzheimer's disease (AD) research using large language models (LLMs) and knowledge graphs. While traditional multimodal analysis requires matched patient IDs across datasets, our approach demonstrates population-level integration of MRI, gene expression, biomarkers, EEG, and clinical indicators from independent cohorts. Statistical analysis identified significant features in each modality, which were connected as nodes in a knowledge graph. LLMs then analyzed the graph to extract potential correlations and generate hypotheses in natural language. This approach revealed several novel relationships, including a potential pathway linking metabolic risk factors to tau protein abnormalities via neuroinflammation (r>0.6, p<0.001), and unexpected correlations between frontal EEG channels and specific gene expression profiles (r=0.42-0.58, p<0.01). Cross-validation with independent datasets confirmed the robustness of major findings, with consistent effect sizes across cohorts (variance <15%). The reproducibility of these findings was further supported by expert review (Cohen's k=0.82) and computational validation. Our framework enables cross modal integration at a conceptual level without requiring patient ID matching, offering new possibilities for understanding AD pathology through fragmented data reuse and generating testable hypotheses for future research.

Deep learning radiopathomics based on pretreatment MRI and whole slide images for predicting over survival in locally advanced nasopharyngeal carcinoma.

Yi X, Yu X, Li C, Li J, Cao H, Lu Q, Li J, Hou J

pubmed logopapersMay 21 2025
To develop an integrative radiopathomic model based on deep learning to predict overall survival (OS) in locally advanced nasopharyngeal carcinoma (LANPC) patients. A cohort of 343 LANPC patients with pretreatment MRI and whole slide image (WSI) were randomly divided into training (n = 202), validation (n = 91), and external test (n = 50) sets. For WSIs, a self-attention mechanism was employed to assess the significance of different patches for the prognostic task, aggregating them into a WSI-level representation. For MRI, a multilayer perceptron was used to encode the extracted radiomic features, resulting in an MRI-level representation. These were combined in a multimodal fusion model to produce prognostic predictions. Model performances were evaluated using the concordance index (C-index), and Kaplan-Meier curves were employed for risk stratification. To enhance model interpretability, attention-based and Integrated Gradients techniques were applied to explain how WSIs and MRI features contribute to prognosis predictions. The radiopathomics model achieved high predictive accuracy in predicting the OS, with a C-index of 0.755 (95 % CI: 0.673-0.838) and 0.744 (95 % CI: 0.623-0.808) in the training and validation sets, respectively, outperforming single-modality models (radiomic signature: 0.636, 95 % CI: 0.584-0.688; deep pathomic signature: 0.736, 95 % CI: 0.684-0.810). In the external test, similar findings were observed for the predictive performance of the radiopathomics, radiomic signature, and deep pathomic signature, with their C-indices being 0.735, 0.626, and 0.660 respectively. The radiopathomics model effectively stratified patients into high- and low-risk groups (P < 0.001). Additionally, attention heatmaps revealed that high-attention regions corresponded with tumor areas in both risk groups. n: The radiopathomics model holds promise for predicting clinical outcomes in LANPC patients, offering a potential tool for improving clinical decision-making.

BrainView: A Cloud-based Deep Learning System for Brain Image Segmentation, Tumor Detection and Visualization.

Ghose P, Jamil HM

pubmed logopapersMay 21 2025
A brain tumor is an abnormal growth in the brain that disrupts its functionality and poses a significant threat to human life by damaging neurons. Early detection and classification of brain tumors are crucial to prevent complications and maintain good health. Recent advancements in deep learning techniques have shown immense potential in image classification and segmentation for tumor identification and classification. In this study, we present a platform, BrainView, for detection, and segmentation of brain tumors from Magnetic Resonance Images (MRI) using deep learning. We utilized EfficientNetB7 pre-trained model to design our proposed DeepBrainNet classification model for analyzing brain MRI images to classify its type. We also proposed a EfficinetNetB7 based image segmentation model, called the EffB7-UNet, for tumor localization. Experimental results show significantly high classification (99.96%) and segmentation (92.734%) accuracies for our proposed models. Finally, we discuss the contours of a cloud application for BrainView using Flask and Flutter to help researchers and clinicians use our machine learning models online for research purposes.
Page 408 of 4524519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.