Sort by:
Page 4 of 874 results

Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces

Dieuwertje Alblas, Patryk Rygiel, Julian Suk, Kaj O. Kappe, Marieke Hofman, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJun 10 2025
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.

Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces

Dieuwertje Alblas, Patryk Rygiel, Julian Suk, Kaj O. Kappe, Marieke Hofman, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJun 10 2025
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models

Nurislam Tursynbek, Hastings Greer, Basar Demir, Marc Niethammer

arxiv logopreprintJun 3 2025
Diffusion models, while trained for image generation, have emerged as powerful foundational feature extractors for downstream tasks. We find that off-the-shelf diffusion models, trained exclusively to generate natural RGB images, can identify semantically meaningful correspondences in medical images. Building on this observation, we propose to leverage diffusion model features as a similarity measure to guide deformable image registration networks. We show that common intensity-based similarity losses often fail in challenging scenarios, such as when certain anatomies are visible in one image but absent in another, leading to anatomically inaccurate alignments. In contrast, our method identifies true semantic correspondences, aligning meaningful structures while disregarding those not present across images. We demonstrate superior performance of our approach on two tasks: multimodal 2D registration (DXA to X-Ray) and monomodal 3D registration (brain-extracted to non-brain-extracted MRI). Code: https://github.com/uncbiag/dgir

Toward Noninvasive High-Resolution In Vivo pH Mapping in Brain Tumors by <sup>31</sup>P-Informed deepCEST MRI.

Schüre JR, Rajput J, Shrestha M, Deichmann R, Hattingen E, Maier A, Nagel AM, Dörfler A, Steidl E, Zaiss M

pubmed logopapersJun 1 2025
The intracellular pH (pH<sub>i</sub>) is critical for understanding various pathologies, including brain tumors. While conventional pH<sub>i</sub> measurement through <sup>31</sup>P-MRS suffers from low spatial resolution and long scan times, <sup>1</sup>H-based APT-CEST imaging offers higher resolution with shorter scan times. This study aims to directly predict <sup>31</sup>P-pH<sub>i</sub> maps from CEST data by using a fully connected neuronal network. Fifteen tumor patients were scanned on a 3-T Siemens PRISMA scanner and received <sup>1</sup>H-based CEST and T1 measurement, as well as <sup>31</sup>P-MRS. A neural network was trained voxel-wise on CEST and T1 data to predict <sup>31</sup>P-pH<sub>i</sub> values, using data from 11 patients for training and 4 for testing. The predicted pH<sub>i</sub> maps were additionally down-sampled to the original the <sup>31</sup>P-pH<sub>i</sub> resolution, to be able to calculate the RMSE and analyze the correlation, while higher resolved predictions were compared with conventional CEST metrics. The results demonstrated a general correspondence between the predicted deepCEST pH<sub>i</sub> maps and the measured <sup>31</sup>P-pH<sub>i</sub> in test patients. However, slight discrepancies were also observed, with a RMSE of 0.04 pH units in tumor regions. High-resolution predictions revealed tumor heterogeneity and features not visible in conventional CEST data, suggesting the model captures unique pH information and is not simply a T1 segmentation. The deepCEST pH<sub>i</sub> neural network enables the APT-CEST hidden pH-sensitivity and offers pH<sub>i</sub> maps with higher spatial resolution in shorter scan time compared with <sup>31</sup>P-MRS. Although this approach is constrained by the limitations of the acquired data, it can be extended with additional CEST features for future studies, thereby offering a promising approach for 3D pH imaging in a clinical environment.

Ensemble learning of deep CNN models and two stage level prediction of Cobb angle on surface topography in adolescents with idiopathic scoliosis.

Hassan M, Gonzalez Ruiz JM, Mohamed N, Burke TN, Mei Q, Westover L

pubmed logopapersJun 1 2025
This study employs Convolutional Neural Networks (CNNs) as feature extractors with appended regression layers for the non-invasive prediction of Cobb Angle (CA) from Surface Topography (ST) scans in adolescents with Idiopathic Scoliosis (AIS). The aim is to minimize radiation exposure during critical growth periods by offering a reliable, non-invasive assessment tool. The efficacy of various CNN-based feature extractors-DenseNet121, EfficientNetB0, ResNet18, SqueezeNet, and a modified U-Net-was evaluated on a dataset of 654 ST scans using a regression analysis framework for accurate CA prediction. The dataset comprised 590 training and 64 testing scans. Performance was evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and accuracy in classifying scoliosis severity (mild, moderate, severe) based on CA measurements. The EfficientNetB0 feature extractor outperformed other models, demonstrating strong performance on the training set (R=0.96, R=20.93) and achieving an MAE of 6.13<sup>∘</sup> and RMSE of 7.5<sup>∘</sup> on the test set. In terms of scoliosis severity classification, it achieved high precision (84.62%) and specificity (95.65% for mild cases and 82.98% for severe cases), highlighting its clinical applicability in AIS management. The regression-based approach using the EfficientNetB0 as a feature extractor presents a significant advancement for accurately determining CA from ST scans, offering a promising tool for improving scoliosis severity categorization and management in adolescents.

Uncertainty Estimation for Dual View X-ray Mammographic Image Registration Using Deep Ensembles.

Walton WC, Kim SJ

pubmed logopapersJun 1 2025
Techniques are developed for generating uncertainty estimates for convolutional neural network (CNN)-based methods for registering the locations of lesions between the craniocaudal (CC) and mediolateral oblique (MLO) mammographic X-ray image views. Multi-view lesion correspondence is an important task that clinicians perform for characterizing lesions during routine mammographic exams. Automated registration tools can aid in this task, yet if the tools also provide confidence estimates, they can be of greater value to clinicians, especially in cases involving dense tissue where lesions may be difficult to see. A set of deep ensemble-based techniques, which leverage a negative log-likelihood (NLL)-based cost function, are implemented for estimating uncertainties. The ensemble architectures involve significant modifications to an existing CNN dual-view lesion registration algorithm. Three architectural designs are evaluated, and different ensemble sizes are compared using various performance metrics. The techniques are tested on synthetic X-ray data, real 2D X-ray data, and slices from real 3D X-ray data. The ensembles generate covariance-based uncertainty ellipses that are correlated with registration accuracy, such that the ellipse sizes can give a clinician an indication of confidence in the mapping between the CC and MLO views. The results also show that the ellipse sizes can aid in improving computer-aided detection (CAD) results by matching CC/MLO lesion detects and reducing false alarms from both views, adding to clinical utility. The uncertainty estimation techniques show promise as a means for aiding clinicians in confidently establishing multi-view lesion correspondence, thereby improving diagnostic capability.

Estimating patient-specific organ doses from head and abdominal CT scans via machine learning with optimized regulation strength and feature quantity.

Shao W, Qu L, Lin X, Yun W, Huang Y, Zhuo W, Liu H

pubmed logopapersJun 1 2025
This study aims to investigate estimation of patient-specific organ doses from CT scans via radiomics feature-based SVR models with training parameter optimization, and maximize SVR models' predictive accuracy and robustness via fine-tuning regularization parameter and input feature quantities. CT images from head and abdominal scans underwent processing using DeepViewer®, an auto-segmentation tool for defining regions of interest (ROIs) of their organs. Radiomics features were extracted from the CT data and ROIs. Benchmark organ doses were then calculated through Monte Carlo (MC) simulations. SVR models, utilizing these extracted radiomics features as inputs for model training, were employed to predict patient-specific organ doses from CT scans. The trained SVR models underwent optimization by adjusting parameters for the input radiomics feature quantity and regulation parameter, resulting in appropriate configurations for accurate patient-specific organ dose predictions. The C values of 5 and 10 have made the SVR models arrive at a saturation state for the head and abdominal organs. The SVR models' MAPE and R<sup>2</sup> strongly depend on organ types. The appropriate parameters respectively are C = 5 or 10 coupled with input feature quantities of 50 for the brain and 200 for the left eye, right eye, left lens, and right lens. the appropriate parameters would be C = 5 or 10 accompanying input feature quantities of 80 for the bowel, 50 for the left kidney, right kidney, and 100 for the liver. Performance optimization of selecting appropriate combinations of input feature quantity and regulation parameters can maximize the predictive accuracy and robustness of radiomics feature-based SVR models in the realm of patient-specific organ dose predictions from CT scans.

Improving predictability, reliability, and generalizability of brain-wide associations for cognitive abilities via multimodal stacking.

Tetereva A, Knodt AR, Melzer TR, van der Vliet W, Gibson B, Hariri AR, Whitman ET, Li J, Lal Khakpoor F, Deng J, Ireland D, Ramrakha S, Pat N

pubmed logopapersJun 1 2025
Brain-wide association studies (BWASs) have attempted to relate cognitive abilities with brain phenotypes, but have been challenged by issues such as predictability, test-retest reliability, and cross-cohort generalizability. To tackle these challenges, we proposed a machine learning "stacking" approach that draws information from whole-brain MRI across different modalities, from task-functional MRI (fMRI) contrasts and functional connectivity during tasks and rest to structural measures, into one prediction model. We benchmarked the benefits of stacking using the Human Connectome Projects: Young Adults (<i>n</i> = 873, 22-35 years old) and Human Connectome Projects-Aging (<i>n</i> = 504, 35-100 years old) and the Dunedin Multidisciplinary Health and Development Study (Dunedin Study, <i>n</i> = 754, 45 years old). For predictability, stacked models led to out-of-sample <i>r</i>∼0.5-0.6 when predicting cognitive abilities at the time of scanning, primarily driven by task-fMRI contrasts. Notably, using the Dunedin Study, we were able to predict participants' cognitive abilities at ages 7, 9, and 11 years using their multimodal MRI at age 45 years, with an out-of-sample <i>r</i> of 0.52. For test-retest reliability, stacked models reached an excellent level of reliability (interclass correlation > 0.75), even when we stacked only task-fMRI contrasts together. For generalizability, a stacked model with nontask MRI built from one dataset significantly predicted cognitive abilities in other datasets. Altogether, stacking is a viable approach to undertake the three challenges of BWAS for cognitive abilities.

Modality Translation and Registration of MR and Ultrasound Images Using Diffusion Models

Xudong Ma, Nantheera Anantrasirichai, Stefanos Bolomytis, Alin Achim

arxiv logopreprintJun 1 2025
Multimodal MR-US registration is critical for prostate cancer diagnosis. However, this task remains challenging due to significant modality discrepancies. Existing methods often fail to align critical boundaries while being overly sensitive to irrelevant details. To address this, we propose an anatomically coherent modality translation (ACMT) network based on a hierarchical feature disentanglement design. We leverage shallow-layer features for texture consistency and deep-layer features for boundary preservation. Unlike conventional modality translation methods that convert one modality into another, our ACMT introduces the customized design of an intermediate pseudo modality. Both MR and US images are translated toward this intermediate domain, effectively addressing the bottlenecks faced by traditional translation methods in the downstream registration task. Experiments demonstrate that our method mitigates modality-specific discrepancies while preserving crucial anatomical boundaries for accurate registration. Quantitative evaluations show superior modality similarity compared to state-of-the-art modality translation methods. Furthermore, downstream registration experiments confirm that our translated images achieve the best alignment performance, highlighting the robustness of our framework for multi-modal prostate image registration.

Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated With Accelerated Brain Ageing: A Population-Based Study.

Wang J, Yang R, Miao Y, Zhang X, Paillard-Borg S, Fang Z, Xu W

pubmed logopapersJun 1 2025
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to cognitive decline and dementia risk. We aimed to investigate the association between MASLD and brain ageing and explore the role of low-grade inflammation. Within the UK Biobank, 30 386 chronic neurological disorders-free participants who underwent brain magnetic resonance imaging (MRI) scans were included. Individuals were categorised into no MASLD/related SLD and MASLD/related SLD (including subtypes of MASLD, MASLD with increased alcohol intake [MetALD] and MASLD with other combined aetiology). Brain age was estimated using machine learning by 1079 brain MRI phenotypes. Brain age gap (BAG) was calculated as the difference between brain age and chronological age. Low-grade inflammation (INFLA) was calculated based on white blood cell count, platelet, neutrophil granulocyte to lymphocyte ratio and C-reactive protein. Data were analysed using linear regression and structural equation models. At baseline, 7360 (24.2%) participants had MASLD/related SLD. Compared to participants with no MASLD/related SLD, those with MASLD/related SLD had significantly larger BAG (β = 0.86, 95% CI = 0.70, 1.02), as well as those with MASLD (β = 0.59, 95% CI = 0.41, 0.77) or MetALD (β = 1.57, 95% CI = 1.31, 1.83). The association between MASLD/related SLD and larger BAG was significant across middle-aged (< 60) and older (≥ 60) adults, males and females, and APOE ɛ4 carriers and non-carriers. INFLA mediated 13.53% of the association between MASLD/related SLD and larger BAG (p < 0.001). MASLD/related SLD, as well as MASLD and MetALD, is associated with accelerated brain ageing, even among middle-aged adults and APOE ɛ4 non-carriers. Low-grade systemic inflammation may partially mediate this association.
Page 4 of 874 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.