Denoising of high-resolution 3D UTE-MR angiogram data using lightweight and efficient convolutional neural networks.
Tessema AW, Ambaye DT, Cho H
Tessema AW, Ambaye DT, Cho H
Canals P, Garcia-Tornel A, Requena M, Jabłońska M, Li J, Balocco S, Díaz O, Tomasello A, Ribo M
Arzani S, Soltani P, Karimi A, Yazdi M, Ayoub A, Khurshid Z, Galderisi D, Devlin H
Navasardyan V, Katz M, Goertz L, Zohranyan V, Navasardyan H, Shahzadi I, Kröger JR, Borggrefe J
Atharva Hans, Abhishek Singh, Pavlos Vlachos, Ilias Bilionis
Jacobs L, Piccirelli M, Vishnevskiy V, Kozerke S
Lo CM, Sung SF
Avgerinos E, Spiliopoulos S, Psachoulia F, Yfantis A, Plakas G, Grigoriadis S, Speranza G, Kakisis Y
Knopp M, Bender CJ, Holzwarth N, Li Y, Kempf J, Caranovic M, Knieling F, Lang W, Rother U, Seitel A, Maier-Hein L, Dreher KK
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.