Sort by:
Page 4 of 1241236 results

An Efficient 3D Latent Diffusion Model for T1-contrast Enhanced MRI Generation

Zach Eidex, Mojtaba Safari, Jie Ding, Richard Qiu, Justin Roper, David Yu, Hui-Kuo Shu, Zhen Tian, Hui Mao, Xiaofeng Yang

arxiv logopreprintSep 29 2025
Objective: Gadolinium-based contrast agents (GBCAs) are commonly employed with T1w MRI to enhance lesion visualization but are restricted in patients at risk of nephrogenic systemic fibrosis and variations in GBCA administration can introduce imaging inconsistencies. This study develops an efficient 3D deep-learning framework to generate T1-contrast enhanced images (T1C) from pre-contrast multiparametric MRI. Approach: We propose the 3D latent rectified flow (T1C-RFlow) model for generating high-quality T1C images. First, T1w and T2-FLAIR images are input into a pretrained autoencoder to acquire an efficient latent space representation. A rectified flow diffusion model is then trained in this latent space representation. The T1C-RFlow model was trained on a curated dataset comprised of the BraTS 2024 glioma (GLI; 1480 patients), meningioma (MEN; 1141 patients), and metastases (MET; 1475 patients) datasets. Selected patients were split into train (N=2860), validation (N=612), and test (N=614) sets. Results: Both qualitative and quantitative results demonstrate that the T1C-RFlow model outperforms benchmark 3D models (pix2pix, DDPM, Diffusion Transformers (DiT-3D)) trained in the same latent space. T1C-RFlow achieved the following metrics - GLI: NMSE 0.044 +/- 0.047, SSIM 0.935 +/- 0.025; MEN: NMSE 0.046 +/- 0.029, SSIM 0.937 +/- 0.021; MET: NMSE 0.098 +/- 0.088, SSIM 0.905 +/- 0.082. T1C-RFlow had the best tumor reconstruction performance and significantly faster denoising times (6.9 s/volume, 200 steps) than conventional DDPM models in both latent space (37.7s, 1000 steps) and patch-based in image space (4.3 hr/volume). Significance: Our proposed method generates synthetic T1C images that closely resemble ground truth T1C in much less time than previous diffusion models. Further development may permit a practical method for contrast-agent-free MRI for brain tumors.

Enhancing Spinal Cord and Canal Segmentation in Degenerative Cervical Myelopathy : The Role of Interactive Learning Models with manual Click.

Han S, Oh JK, Cho W, Kim TJ, Hong N, Park SB

pubmed logopapersSep 29 2025
We aim to develop an interactive segmentation model that can offer accuracy and reliability for the segmentation of the irregularly shaped spinal cord and canal in degenerative cervical myelopathy (DCM) through manual click and model refinement. A dataset of 1444 frames from 294 magnetic resonance imaging records of DCM patients was used and we developed two different segmentation models for comparison : auto-segmentation and interactive segmentation. The former was based on U-Net and utilized a pretrained ConvNeXT-tiny as its encoder. For the latter, we employed an interactive segmentation model structured by SimpleClick, a large model that utilizes a vision transformer as its backbone, together with simple fine-tuning. The segmentation performance of the two models were compared in terms of their Dice scores, mean intersection over union (mIoU), Average Precision and Hausdorff distance. The efficiency of the interactive segmentation model was evaluated by the number of clicks required to achieve a target mIoU. Our model achieved better scores across all four-evaluation metrics for segmentation accuracy, showing improvements of +6.4%, +1.8%, +3.7%, and -53.0% for canal segmentation, and +11.7%, +6.0%, +18.2%, and -70.9% for cord segmentation with 15 clicks, respectively. The required clicks for the interactive segmentation model to achieve a 90% mIoU for spinal canal with cord cases and 80% mIoU for spinal cord cases were 11.71 and 11.99, respectively. We found that the interactive segmentation model significantly outperformed the auto-segmentation model. By incorporating simple manual inputs, the interactive model effectively identified regions of interest, particularly in the complex and irregular shapes of the spinal cord, demonstrating both enhanced accuracy and adaptability.

A Scalable Distributed Framework for Multimodal GigaVoxel Image Registration

Rohit Jena, Vedant Zope, Pratik Chaudhari, James C. Gee

arxiv logopreprintSep 29 2025
In this work, we propose FFDP, a set of IO-aware non-GEMM fused kernels supplemented with a distributed framework for image registration at unprecedented scales. Image registration is an inverse problem fundamental to biomedical and life sciences, but algorithms have not scaled in tandem with image acquisition capabilities. Our framework complements existing model parallelism techniques proposed for large-scale transformer training by optimizing non-GEMM bottlenecks and enabling convolution-aware tensor sharding. We demonstrate unprecedented capabilities by performing multimodal registration of a 100 micron ex-vivo human brain MRI volume at native resolution - an inverse problem more than 570x larger than a standard clinical datum in about a minute using only 8 A6000 GPUs. FFDP accelerates existing state-of-the-art optimization and deep learning registration pipelines by upto 6 - 7x while reducing peak memory consumption by 20 - 59%. Comparative analysis on a 250 micron dataset shows that FFDP can fit upto 64x larger problems than existing SOTA on a single GPU, and highlights both the performance and efficiency gains of FFDP compared to SOTA image registration methods.

FedDAPL: Toward Client-Private Generalization in Federated Learning

Soroosh Safari Loaliyan, Jose-Luis Ambite, Paul M. Thompson, Neda Jahanshad, Greg Ver Steeg

arxiv logopreprintSep 28 2025
Federated Learning (FL) trains models locally at each research center or clinic and aggregates only model updates, making it a natural fit for medical imaging, where strict privacy laws forbid raw data sharing. A major obstacle is scanner-induced domain shift: non-biological variations in hardware or acquisition protocols can cause models to fail on external sites. Most harmonization methods correct this shift by directly comparing data across sites, conflicting with FL's privacy constraints. Domain Generalization (DG) offers a privacy-friendly alternative - learning site-invariant representations without sharing raw data - but standard DG pipelines still assume centralized access to multi-site data, again violating FL's guarantees. This paper meets these difficulties with a straightforward integration of a Domain-Adversarial Neural Network (DANN) within the FL process. After demonstrating that a naive federated DANN fails to converge, we propose a proximal regularization method that stabilizes adversarial training among clients. Experiments on T1-weighted 3-D brain MRIs from the OpenBHB dataset, performing brain-age prediction on participants aged 6-64 y (mean 22+/-6 y; 45 percent male) in training and 6-79 y (mean 19+/-13 y; 55 percent male) in validation, show that training on 15 sites and testing on 19 unseen sites yields superior cross-site generalization over FedAvg and ERM while preserving data privacy.

Dementia-related volumetric assessments in neuroradiology reports: a natural language processing-based study.

Mayers AJ, Roberts A, Venkataraman AV, Booth C, Stewart R

pubmed logopapersSep 28 2025
Structural MRI of the brain is routinely performed on patients referred to memory clinics; however, resulting radiology reports, including volumetric assessments, are conventionally stored as unstructured free text. We sought to use natural language processing (NLP) to extract text relating to intracranial volumetric assessment from brain MRI text reports to enhance routine data availability for research purposes. Electronic records from a large mental healthcare provider serving a geographic catchment of 1.3 million residents in four boroughs of south London, UK. A corpus of 4007 de-identified brain MRI reports from patients referred to memory assessment services. An NLP algorithm was developed, using a span categorisation approach, to extract six binary (presence/absence) categories from the text reports: (i) global volume loss, (ii) hippocampal/medial temporal lobe volume loss and (iii) other lobar/regional volume loss. Distributions of these categories were evaluated. The overall F1 score for the six categories was 0.89 (precision 0.92, recall 0.86), with the following precision/recall for each category: presence of global volume loss 0.95/0.95, absence of global volume loss 0.94/0.77, presence of regional volume loss 0.80/0.58, absence of regional volume loss 0.91/0.93, presence of hippocampal volume loss 0.90/0.88, and absence of hippocampal volume loss 0.94/0.92. These results support the feasibility and accuracy of using NLP techniques to extract volumetric assessments from radiology reports, and the potential for automated generation of novel meta-data from dementia assessments in electronic health records.

Benchmarking DINOv3 for Multi-Task Stroke Analysis on Non-Contrast CT

Donghao Zhang, Yimin Chen, Kauê TN Duarte, Taha Aslan, Mohamed AlShamrani, Brij Karmur, Yan Wan, Shengcai Chen, Bo Hu, Bijoy K Menon, Wu Qiu

arxiv logopreprintSep 27 2025
Non-contrast computed tomography (NCCT) is essential for rapid stroke diagnosis but is limited by low image contrast and signal to noise ratio. We address this challenge by leveraging DINOv3, a state-of-the-art self-supervised vision transformer, to generate powerful feature representations for a comprehensive set of stroke analysis tasks. Our evaluation encompasses infarct and hemorrhage segmentation, anomaly classification (normal vs. stroke and normal vs. infarct vs. hemorrhage), hemorrhage subtype classification (EDH, SDH, SAH, IPH, IVH), and dichotomized ASPECTS classification (<=6 vs. >6) on multiple public and private datasets. This study establishes strong benchmarks for these tasks and demonstrates the potential of advanced self-supervised models to improve automated stroke diagnosis from NCCT, providing a clear analysis of both the advantages and current constraints of the approach. The code is available at https://github.com/Zzz0251/DINOv3-stroke.

Beyond tractography in brain connectivity mapping with dMRI morphometry and functional networks.

Wang JT, Lin CP, Liu HM, Pierpaoli C, Lo CZ

pubmed logopapersSep 27 2025
Traditional brain connectivity studies have focused mainly on structural connectivity, often relying on tractography with diffusion MRI (dMRI) to reconstruct white matter pathways. In parallel, studies of functional connectivity have examined correlations in brain activity using fMRI. However, emerging methodologies are advancing our understanding of brain networks. Here we explore advanced connectivity approaches beyond conventional tractography, focusing on dMRI morphometry and the integration of structural and functional connectivity analysis. dMRI morphometry enables quantitative assessment of white matter pathway volumes through statistical comparison with normative populations, while functional connectivity reveals network organization that is not restricted to direct anatomical connections. More recently, approaches that combine diffusion tensor imaging (DTI) with functional correlation tensor (FCT) analysis have been introduced, and these complementary methods provide new perspectives into brain structure-function relationships. Together, such approaches have important implications for neurodevelopmental and neurological disorders as well as brain plasticity. The integration of these methods with artificial intelligence techniques have the potential to support both basic neuroscience research and clinical applications.

Leveraging multi-modal foundation model image encoders to enhance brain MRI-based headache classification.

Rafsani F, Sheth D, Che Y, Shah J, Siddiquee MMR, Chong CD, Nikolova S, Ross K, Dumkrieger G, Li B, Wu T, Schwedt TJ

pubmed logopapersSep 26 2025
Headaches are a nearly universal human experience traditionally diagnosed based solely on symptoms. Recent advances in imaging techniques and artificial intelligence (AI) have enabled the development of automated headache detection systems, which can enhance clinical diagnosis, especially when symptom-based evaluations are insufficient. Current AI models often require extensive data, limiting their clinical applicability where data availability is low. However, deep learning models, particularly pre-trained ones and fine-tuned with smaller, targeted datasets can potentially overcome this limitation. By leveraging BioMedCLIP, a pre-trained foundational model combining a vision transformer (ViT) image encoder with PubMedBERT text encoder, we fine-tuned the pre-trained ViT model for the specific purpose of classifying headaches and detecting biomarkers from brain MRI data. The dataset consisted of 721 individuals: 424 healthy controls (HC) from the IXI dataset and 297 local participants, including migraine sufferers (n = 96), individuals with acute post-traumatic headache (APTH, n = 48), persistent post-traumatic headache (PPTH, n = 49), and additional HC (n = 104). The model achieved high accuracy across multiple balanced test sets, including 89.96% accuracy for migraine versus HC, 88.13% for APTH versus HC, and 83.13% for PPTH versus HC, all validated through five-fold cross-validation for robustness. Brain regions identified by Gradient-weighted Class Activation Mapping analysis as responsible for migraine classification included the postcentral cortex, supramarginal gyrus, superior temporal cortex, and precuneus cortex; for APTH, rostral middle frontal and precentral cortices; and, for PPTH, cerebellar cortex and precentral cortex. To our knowledge, this is the first study to leverage a multimodal biomedical foundation model in the context of headache classification and biomarker detection using structural MRI, offering complementary insights into the causes and brain changes associated with headache disorders.

Hemorica: A Comprehensive CT Scan Dataset for Automated Brain Hemorrhage Classification, Segmentation, and Detection

Kasra Davoodi, Mohammad Hoseyni, Javad Khoramdel, Reza Barati, Reihaneh Mortazavi, Amirhossein Nikoofard, Mahdi Aliyari-Shoorehdeli, Jaber Hatam Parikhan

arxiv logopreprintSep 26 2025
Timely diagnosis of Intracranial hemorrhage (ICH) on Computed Tomography (CT) scans remains a clinical priority, yet the development of robust Artificial Intelligence (AI) solutions is still hindered by fragmented public data. To close this gap, we introduce Hemorica, a publicly available collection of 372 head CT examinations acquired between 2012 and 2024. Each scan has been exhaustively annotated for five ICH subtypes-epidural (EPH), subdural (SDH), subarachnoid (SAH), intraparenchymal (IPH), and intraventricular (IVH)-yielding patient-wise and slice-wise classification labels, subtype-specific bounding boxes, two-dimensional pixel masks and three-dimensional voxel masks. A double-reading workflow, preceded by a pilot consensus phase and supported by neurosurgeon adjudication, maintained low inter-rater variability. Comprehensive statistical analysis confirms the clinical realism of the dataset. To establish reference baselines, standard convolutional and transformer architectures were fine-tuned for binary slice classification and hemorrhage segmentation. With only minimal fine-tuning, lightweight models such as MobileViT-XS achieved an F1 score of 87.8% in binary classification, whereas a U-Net with a DenseNet161 encoder reached a Dice score of 85.5% for binary lesion segmentation that validate both the quality of the annotations and the sufficiency of the sample size. Hemorica therefore offers a unified, fine-grained benchmark that supports multi-task and curriculum learning, facilitates transfer to larger but weakly labelled cohorts, and facilitates the process of designing an AI-based assistant for ICH detection and quantification systems.

Model-driven individualized transcranial direct current stimulation for the treatment of insomnia disorder: protocol for a randomized, sham-controlled, double-blind study.

Wang Y, Jia W, Zhang Z, Bai T, Xu Q, Jiang J, Wang Z

pubmed logopapersSep 26 2025
Insomnia disorder is a prevalent condition associated with significant negative impacts on health and daily functioning. Transcranial direct current stimulation (tDCS) has emerged as a potential technique for improving sleep. However, questions remain regarding its clinical efficacy, and there is a lack of standardized individualized stimulation protocols. This study aims to evaluate the efficacy of model-driven, individualized tDCS for treating insomnia disorder through a randomized, double-blind, sham-controlled trial. A total of 40 patients diagnosed with insomnia disorder will be recruited and randomly assigned to either an active tDCS group or a sham stimulation group. Individualized stimulation parameters will be determined through machine learning-based electric field modeling incorporating structural MRI and EEG data. Participants will undergo 10 sessions of tDCS (5 days/week for 2 consecutive weeks), with follow-up assessments conducted at 2 and 4 weeks after treatment. The primary outcome is the reduction in the Insomnia Severity Index (ISI) score at two weeks post-treatment. Secondary outcomes include changes in sleep parameters, anxiety, and depression scores. This study is expected to provide evidence for the effectiveness of individualized tDCS in improving sleep quality and reducing insomnia symptoms. This integrative approach, combining advanced neuroimaging and electrophysiological biomarkers, has the potential to establish an evidence-based framework for individualized brain stimulation, optimizing therapeutic outcomes. This study is registered at ClinicalTrials.gov (Identifier: NCT06671457) and was registered on 4 November 2024. The online version contains supplementary material available at 10.1186/s12888-025-07347-5.
Page 4 of 1241236 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.