Sort by:
Page 37 of 93924 results

Automatic quality control of brain 3D FLAIR MRIs for a clinical data warehouse.

Loizillon S, Bottani S, Maire A, Ströer S, Chougar L, Dormont D, Colliot O, Burgos N

pubmed logopapersJul 1 2025
Clinical data warehouses, which have arisen over the last decade, bring together the medical data of millions of patients and offer the potential to train and validate machine learning models in real-world scenarios. The quality of MRIs collected in clinical data warehouses differs significantly from that generally observed in research datasets, reflecting the variability inherent to clinical practice. Consequently, the use of clinical data requires the implementation of robust quality control tools. By using a substantial number of pre-existing manually labelled T1-weighted MR images (5,500) alongside a smaller set of newly labelled FLAIR images (926), we present a novel semi-supervised adversarial domain adaptation architecture designed to exploit shared representations between MRI sequences thanks to a shared feature extractor, while taking into account the specificities of the FLAIR thanks to a specific classification head for each sequence. This architecture thus consists of a common invariant feature extractor, a domain classifier and two classification heads specific to the source and target, all designed to effectively deal with potential class distribution shifts between the source and target data classes. The primary objectives of this paper were: (1) to identify images which are not proper 3D FLAIR brain MRIs; (2) to rate the overall image quality. For the first objective, our approach demonstrated excellent results, with a balanced accuracy of 89%, comparable to that of human raters. For the second objective, our approach achieved good performance, although lower than that of human raters. Nevertheless, the automatic approach accurately identified bad quality images (balanced accuracy >79%). In conclusion, our proposed approach overcomes the initial barrier of heterogeneous image quality in clinical data warehouses, thereby facilitating the development of new research using clinical routine 3D FLAIR brain images.

Machine learning approaches for fine-grained symptom estimation in schizophrenia: A comprehensive review.

Foteinopoulou NM, Patras I

pubmed logopapersJul 1 2025
Schizophrenia is a severe yet treatable mental disorder, and it is diagnosed using a multitude of primary and secondary symptoms. Diagnosis and treatment for each individual depends on the severity of the symptoms. Therefore, there is a need for accurate, personalised assessments. However, the process can be both time-consuming and subjective; hence, there is a motivation to explore automated methods that can offer consistent diagnosis and precise symptom assessments, thereby complementing the work of healthcare practitioners. Machine Learning has demonstrated impressive capabilities across numerous domains, including medicine; the use of Machine Learning in patient assessment holds great promise for healthcare professionals and patients alike, as it can lead to more consistent and accurate symptom estimation. This survey reviews methodologies utilising Machine Learning for diagnosing and assessing schizophrenia. Contrary to previous reviews that primarily focused on binary classification, this work recognises the complexity of the condition and, instead, offers an overview of Machine Learning methods designed for fine-grained symptom estimation. We cover multiple modalities, namely Medical Imaging, Electroencephalograms and Audio-Visual, as the illness symptoms can manifest in a patient's pathology and behaviour. Finally, we analyse the datasets and methodologies used in the studies and identify trends, gaps, as opportunities for future research.

Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders.

Seeley SH, Fremont R, Schreiber Z, Morris LS, Cahn L, Murrough JW, Schiller D, Charney DS, Pietrzak RH, Perez-Rodriguez MM, Feder A

pubmed logopapersJul 1 2025
Despite their exposure to potentially traumatic stressors, the majority of World Trade Center (WTC) responders-those who worked on rescue, recovery, and cleanup efforts on or following September 11, 2001-have shown psychological resilience, never developing long-term psychopathology. Psychological resilience may be protective against the earlier age-related cognitive changes associated with posttraumatic stress disorder (PTSD) in this cohort. In the current study, we calculated the difference between estimated brain age from structural magnetic resonance imaging (MRI) data and chronological age in WTC responders who participated in a parent functional MRI study of resilience (<i>N</i> = 97). We hypothesized that highly resilient responders would show the least brain aging and explored associations between brain aging and psychological and cognitive measures. WTC responders screened for the absence of cognitive impairment were classified into 3 groups: a WTC-related PTSD group (<i>n</i> = 32), a Highly Resilient group without lifetime psychopathology despite high WTC-related exposure (<i>n</i> = 34), and a Lower WTC-Exposed control group also without lifetime psychopathology (<i>n</i> = 31). We used <i>BrainStructureAges</i>, a deep learning algorithm that estimates voxelwise age from T1-weighted MRI data to calculate decelerated (or accelerated) brain aging relative to chronological age. Globally, brain aging was decelerated in the Highly Resilient group and accelerated in the PTSD group, with a significant group difference (<i>p</i> = .021, Cohen's <i>d</i> = 0.58); the Lower WTC-Exposed control group exhibited no significant brain age gap or group difference. Lesser brain aging was associated with resilience-linked factors including lower emotional suppression, greater optimism, and better verbal learning. Cognitively healthy WTC responders show differences in brain aging related to resilience and PTSD.

Assessment of AI-accelerated T2-weighted brain MRI, based on clinical ratings and image quality evaluation.

Nonninger JN, Kienast P, Pogledic I, Mallouhi A, Barkhof F, Trattnig S, Robinson SD, Kasprian G, Haider L

pubmed logopapersJul 1 2025
To compare clinical ratings and signal-to-noise ratio (SNR) measures of a commercially available Deep Learning-based MRI reconstruction method (T2<sub>(DR)</sub>) against conventional T2- turbo spin echo brain MRI (T2<sub>(CN)</sub>). 100 consecutive patients with various neurological conditions underwent both T2<sub>(DR)</sub> and T2<sub>(CN)</sub> on a Siemens Vida 3 T scanner with a 64-channel head coil in the same examination. Acquisition times were 3.33 min for T2<sub>(CN)</sub> and 1.04 min for T2<sub>(DR)</sub>. Four neuroradiologists evaluated overall image quality (OIQ), diagnostic safety (DS), and image artifacts (IA), blinded to the acquisition mode. SNR and SNR<sub>eff</sub> (adjusted for acquisition time) were calculated for air, grey- and white matter, and cerebrospinal fluid. The mean patient age was 43.6 years (SD 20.3), with 54 females. The distribution of non-diagnostic ratings did not differ significantly between T2<sub>(CN)</sub> and T2<sub>(DR)</sub> (IA p = 0.108; OIQ: p = 0.700 and DS: p = 0.652). However, when considering the full spectrum of ratings, significant differences favouring T2<sub>(CN)</sub> emerged in OIQ (p = 0.003) and IA (p < 0.001). T2<sub>(CN)</sub> had higher SNR (157.9, SD 123.4) than T2<sub>(DR)</sub> (112.8, SD 82.7), p < 0.001, but T2<sub>(DR)</sub> demonstrated superior SNR<sub>eff</sub> (14.1, SD 10.3) compared to T2<sub>(CN)</sub> (10.8, SD 8.5), p < 0.001. Our results suggest that while T2<sub>(DR)</sub> may be clinically applicable for a diagnostic setting, it does not fully match the quality of high-standard conventional T2<sub>(CN)</sub>, MRI acquisitions.

Atrophy related neuroimaging biomarkers for neurological and cognitive function in Wilson disease.

Hausmann AC, Rubbert C, Querbach SK, Ivan VL, Schnitzler A, Hartmann CJ, Caspers J

pubmed logopapersJul 1 2025
Although brain atrophy is a prevalent finding in Wilson disease (WD), its role as a contributing factor to clinical symptoms, especially cognitive decline, remains unclear. The objective of this study was to investigate different neuroimaging biomarkers related to grey matter atrophy and their relationship with neurological and cognitive impairment in WD. In this study, 30 WD patients and 30 age- and sex-matched healthy controls were enrolled prospectively and underwent structural magnetic resonance imaging (MRI). Regional atrophy was evaluated using established linear radiological measurements and the automated workflow volumetric estimation of gross atrophy and brain age longitudinally (veganbagel) for age- and sex-specific estimations of regional brain volume changes. Brain Age Gap Estimate (BrainAGE), defined as the discrepancy between machine learning predicted brain age from structural MRI and chronological age, was assessed using an established model. Atrophy markers and clinical scores were compared between 19 WD patients with a neurological phenotype (neuro-WD), 11 WD patients with a hepatic phenotype (hep-WD), and a healthy control group using Welch's ANOVA or Kruskal-Wallis test. Correlations between atrophy markers and neurological and neuropsychological scores were investigated using Spearman's correlation coefficients. Patients with neuro-WD demonstrated increased third ventricle width and bicaudate index, along with significant striatal-thalamic atrophy patterns that correlated with global cognitive function, mental processing speed, and verbal memory. Median BrainAGE was significantly higher in patients with neuro-WD (8.97 years, interquartile range [IQR] = 5.62-15.73) compared to those with hep-WD (4.72 years, IQR = 0.00-5.48) and healthy controls (0.46 years, IQR = - 4.11-4.24). Striatal-thalamic atrophy and BrainAGE were significantly correlated with neurological symptom severity. Our findings indicate advanced predicted brain age and substantial striatal-thalamic atrophy patterns in patients with neuro-WD, which serve as promising neuroimaging biomarkers for neurological and cognitive functions in treated, chronic WD.

Volumetric and Diffusion Tensor Imaging Abnormalities Are Associated With Behavioral Changes Post-Concussion in a Youth Pig Model of Mild Traumatic Brain Injury.

Sanjida I, Alesa N, Chenyang L, Jiangyang Z, Bianca DM, Ana V, Shaun S, Avner M, Kirk M, Aimee C, Jie H, Ricardo MA, Jane M, Galit P

pubmed logopapersJul 1 2025
Mild traumatic brain injury (mTBI) caused by sports-related incidents in children and youth often leads to prolonged cognitive impairments but remains difficult to diagnose. In order to identify clinically relevant imaging and behavioral biomarkers associated concussion, a closed-head mTBI was induced in adolescent pigs. Twelve (n = 4 male and n = 8 female), 16-week old Yucatan pigs were tested; n = 6 received mTBI and n = 6 received a sham procedure. T1-weighted imaging was used to assess volumetric alterations in different regions of the brain and diffusion tensor imaging (DTI) to examine microstructural damage in white matter. The pigs were imaged at 1- and 3-month post-injury. Neuropsychological screening for executive function and anxiety were performed before and in the months after the injury. The volumetric analysis showed significant longitudinal changes in pigs with mTBI compared with sham, which may be attributed to swelling and neuroinflammation. Fractional anisotropy (FA) values derived from DTI images demonstrated a 21% increase in corpus callosum from 1 to 3 months in mTBI pigs, which is significantly higher than in sham pigs (4.8%). Additionally, comparisons of the left and right internal capsules revealed a decrease in FA in the right internal capsule for mTBI pigs, which may indicate demyelination. The neuroimaging results suggest that the injury had disrupted the maturation of white and gray matter in the developing brain. Behavioral testing showed that compare to sham pigs, mTBI pigs exhibited 23% increased activity in open field tests, 35% incraesed escape attempts, along with a 65% decrease in interaction with the novel object, suggesting possible memory impairments and cognitive deficits. The correlation analysis showed an associations between volumetric features and behavioral metrics. Furthermore, a machine learning model, which integrated FA, volumetric features and behavioral test metrics, achieved 67% accuracy, indicating its potential to differentiate the two groups. Thus, the imaging biomarkers were indicative of long-term behavioral impairments and could be crucial to the clinical management of concussion in youth.

Advancements in the application of MRI radiomics in meningioma.

Song D, Cai R, Lou Y, Zhang K, Xu D, Yan D, Guo F

pubmed logopapersJul 1 2025
Meningiomas are among the most common intracranial tumors, and challenges still remain in terms of tumor classification, treatment, and management. With the popularization of artificial intelligence technology, radiomics has been further developed and more extensively applied in the study of meningiomas. This objective and quantitative technique has played an important role in the identification, classification, grading, pathology, treatment, and prognosis of meningiomas, although new problems have also emerged. This review examines the application of magnetic resonance imaging (MRI) techniques in meningioma research. A database search was conducted for articles published between November 2017 and April 2025, with a total of 87 studies included after screening. These studies were summarized in detail, and the risk of bias and the certainty of the evidence were assessed using the Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2) and radiomics quality scores (RQS). All the studies were retrospective, with most being single-center studies. Contrast-enhanced T1-weighted imaging (T1C) and T2-weighted imaging (T2WI) are the most commonly used MRI sequences. Current research focuses on five topics, namely, differentiation, grade and subtypes, molecular pathology, biological behavior, treatment, and complications, with 14, 32, 14, 12, and 19 studies addressing these topics (some of which are multiple topics). Combined imaging features with clinical or pathological features often outperform traditional clinical models. Most studies show a low to moderate risk of bias. Large, prospective, multicenter studies are needed to validate the performance of radiomic models in diverse patient populations before their clinical implementation can be considered.

Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation.

Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y

pubmed logopapersJul 1 2025
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.

Machine learning-based model to predict long-term tumor control and additional interventions following pituitary surgery for Cushing's disease.

Shinya Y, Ghaith AK, Hong S, Erickson D, Bancos I, Herndon JS, Davidge-Pitts CJ, Nguyen RT, Bon Nieves A, Sáez Alegre M, Morshed RA, Pinheiro Neto CD, Peris Celda M, Pollock BE, Meyer FB, Atkinson JLD, Van Gompel JJ

pubmed logopapersJul 1 2025
In this study, the authors aimed to establish a supervised machine learning (ML) model based on multiple tree-based algorithms to predict long-term biochemical outcomes and intervention-free survival (IFS) after endonasal transsphenoidal surgery (ETS) in patients with Cushing's disease (CD). The medical records of patients who underwent ETS for CD between 2013 and 2023 were reviewed. Data were collected on the patient's baseline characteristics, intervention details, histopathology, surgical outcomes, and postoperative endocrine functions. The study's primary outcome was IFS, and the therapeutic outcomes were labeled as "under control" or "treatment failure," depending on whether additional therapeutic interventions after primary ETS were required. The decision tree and random forest classifiers were trained and tested to predict long-term IFS based on unseen data, using an 80/20 cohort split. Data from 150 patients, with a median follow-up period of 56 months, were extracted. In the cohort, 42 (28%) patients required additional intervention for persistent or recurrent CD. Consequently, the IFS rates following ETS alone were 83% at 3 years and 78% at 5 years. Multivariable Cox proportional hazards analysis demonstrated that a smaller tumor diameter that could be detected by MRI (hazard ratio 0.95, 95% CI 0.90-0.99; p = 0.047) was significantly associated with greater IFS. However, the lack of tumor detection on MRI was a poor predictor. The ML-based model using a decision tree model displayed 91% accuracy (95% CI 0.70-0.94, sensitivity 87.0%, specificity 89.0%) in predicting IFS in the unseen test dataset. Random forest analysis revealed that tumor size (mean minimal depth 1.67), Knosp grade (1.75), patient age (1.80), and BMI (1.99) were the four most significant predictors of long-term IFS. The ML algorithm could predict long-term postoperative endocrinological remission in CD with high accuracy, indicating that prognosis may vary not only with previously reported factors such as tumor size, Knosp grade, gross-total resection, and patient age but also with BMI. The decision tree flowchart could potentially stratify patients with CD before ETS, allowing for the selection of personalized treatment options and thereby assisting in determining treatment plans for these patients. This ML model may lead to a deeper understanding of the complex mechanisms of CD by uncovering patterns embedded within the data.

Deep learning-based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia.

Halbert-Elliott KM, Xie ME, Dong B, Das O, Wang X, Jackson CM, Lim M, Huang J, Yedavalli VS, Bettegowda C, Xu R

pubmed logopapersJul 1 2025
Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels. Six U-Net-based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors' institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations. Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm2, which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29). U-Net-based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.
Page 37 of 93924 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.