Sort by:
Page 37 of 74733 results

Thin-slice T<sub>2</sub>-weighted images and deep-learning-based super-resolution reconstruction: improved preoperative assessment of vascular invasion for pancreatic ductal adenocarcinoma.

Zhou X, Wu Y, Qin Y, Song C, Wang M, Cai H, Zhao Q, Liu J, Wang J, Dong Z, Luo Y, Peng Z, Feng ST

pubmed logopapersJun 30 2025
To evaluate the efficacy of thin-slice T<sub>2</sub>-weighted imaging (T<sub>2</sub>WI) and super-resolution reconstruction (SRR) for preoperative assessment of vascular invasion in pancreatic ductal adenocarcinoma (PDAC). Ninety-five PDACs with preoperative MRI were retrospectively enrolled as a training set, with non-reconstructed T<sub>2</sub>WI (NRT<sub>2</sub>) in different slice thicknesses (NRT<sub>2</sub>-3, 3 mm; NRT<sub>2</sub>-5, ≥ 5 mm). A prospective test set was collected with NRT<sub>2</sub>-5 (n = 125) only. A deep-learning network was employed to generate reconstructed super-resolution T<sub>2</sub>WI (SRT<sub>2</sub>) in different slice thicknesses (SRT<sub>2</sub>-3, 3 mm; SRT<sub>2</sub>-5, ≥ 5 mm). Image quality was assessed, including the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal-intensity ratio (SIR<sub>t/p</sub>, tumor/pancreas; SIR<sub>t/b</sub>, tumor/background). Diagnostic efficacy for vascular invasion was evaluated using the area under the curve (AUC) and compared across different slice thicknesses before and after reconstruction. SRT<sub>2</sub>-5 demonstrated higher SNR and SIR<sub>t/p</sub> compared to NRT<sub>2</sub>-5 (74.18 vs 72.46; 1.42 vs 1.30; p < 0.05). SRT<sub>2</sub>-3 showed increased SIR<sub>t/p</sub> and SIR<sub>t/b</sub> over NRT<sub>2</sub>-3 (1.35 vs 1.31; 2.73 vs 2.58; p < 0.05). SRT<sub>2</sub>-5 showed higher CNR, SIR<sub>t/p</sub> and SIR<sub>t/b</sub> than NRT<sub>2</sub>-3 (p < 0.05). NRT<sub>2</sub>-3 outperformed NRT<sub>2</sub>-5 in evaluating venous invasion (AUC: 0.732 vs 0.597, p = 0.021). SRR improved venous assessment (AUC: NRT<sub>2</sub>-3, 0.927 vs 0.732; NRT<sub>2</sub>-5, 0.823 vs 0.597; p < 0.05), and SRT<sub>2</sub>-5 exhibits comparable efficacy to NRT<sub>2</sub>-3 in venous assessment (AUC: 0.823 vs 0.732, p = 0.162). Thin-slice T<sub>2</sub>WI and SRR effectively improve the image quality and diagnostic efficacy for assessing venous invasion in PDAC. Thick-slice T<sub>2</sub>WI with SRR is a potential alternative to thin-slice T<sub>2</sub>WI. Both thin-slice T<sub>2</sub>-WI and SRR effectively improve image quality and diagnostic performance, providing valuable options for optimizing preoperative vascular assessment in PDAC. Non-invasive and accurate assessment of vascular invasion supports treatment planning and avoids futile surgery. Vascular invasion evaluation is critical for the surgical eligibility of PDAC. SRR improved image quality and vascular assessment in T<sub>2</sub>WI. Utilizing thin-slice T<sub>2</sub>WI and SRR aids in clinical decision making for PDAC.

Scout-Dose-TCM: Direct and Prospective Scout-Based Estimation of Personalized Organ Doses from Tube Current Modulated CT Exams

Maria Jose Medrano, Sen Wang, Liyan Sun, Abdullah-Al-Zubaer Imran, Jennie Cao, Grant Stevens, Justin Ruey Tse, Adam S. Wang

arxiv logopreprintJun 30 2025
This study proposes Scout-Dose-TCM for direct, prospective estimation of organ-level doses under tube current modulation (TCM) and compares its performance to two established methods. We analyzed contrast-enhanced chest-abdomen-pelvis CT scans from 130 adults (120 kVp, TCM). Reference doses for six organs (lungs, kidneys, liver, pancreas, bladder, spleen) were calculated using MC-GPU and TotalSegmentator. Based on these, we trained Scout-Dose-TCM, a deep learning model that predicts organ doses corresponding to discrete cosine transform (DCT) basis functions, enabling real-time estimates for any TCM profile. The model combines a feature learning module that extracts contextual information from lateral and frontal scouts and scan range with a dose learning module that output DCT-based dose estimates. A customized loss function incorporated the DCT formulation during training. For comparison, we implemented size-specific dose estimation per AAPM TG 204 (Global CTDIvol) and its organ-level TCM-adapted version (Organ CTDIvol). A 5-fold cross-validation assessed generalizability by comparing mean absolute percentage dose errors and r-squared correlations with benchmark doses. Average absolute percentage errors were 13% (Global CTDIvol), 9% (Organ CTDIvol), and 7% (Scout-Dose-TCM), with bladder showing the largest discrepancies (15%, 13%, and 9%). Statistical tests confirmed Scout-Dose-TCM significantly reduced errors vs. Global CTDIvol across most organs and improved over Organ CTDIvol for the liver, bladder, and pancreas. It also achieved higher r-squared values, indicating stronger agreement with Monte Carlo benchmarks. Scout-Dose-TCM outperformed Global CTDIvol and was comparable to or better than Organ CTDIvol, without requiring organ segmentations at inference, demonstrating its promise as a tool for prospective organ-level dose estimation in CT.

CMT-FFNet: A CMT-based feature-fusion network for predicting TACE treatment response in hepatocellular carcinoma.

Wang S, Zhao Y, Cai X, Wang N, Zhang Q, Qi S, Yu Z, Liu A, Yao Y

pubmed logopapersJun 30 2025
Accurately and preoperatively predicting tumor response to transarterial chemoembolization (TACE) treatment is crucial for individualized treatment decision-making hepatocellular carcinoma (HCC). In this study, we propose a novel feature fusion network based on the Convolutional Neural Networks Meet Vision Transformers (CMT) architecture, termed CMT-FFNet, to predict TACE efficacy using preoperative multiphase Magnetic Resonance Imaging (MRI) scans. The CMT-FFNet combines local feature extraction with global dependency modeling through attention mechanisms, enabling the extraction of complementary information from multiphase MRI data. Additionally, we introduce an orthogonality loss to optimize the fusion of imaging and clinical features, further enhancing the complementarity of cross-modal features. Moreover, visualization techniques were employed to highlight key regions contributing to model decisions. Extensive experiments were conducted to evaluate the effectiveness of the proposed modules and network architecture. Experimental results demonstrate that our model effectively captures latent correlations among features extracted from multiphase MRI data and multimodal inputs, significantly improving the prediction performance of TACE treatment response in HCC patients.

Enhancing weakly supervised data augmentation networks for thyroid nodule assessment using traditional and doppler ultrasound images.

Keatmanee C, Songsaeng D, Klabwong S, Nakaguro Y, Kunapinun A, Ekpanyapong M, Dailey MN

pubmed logopapersJun 30 2025
Thyroid ultrasound (US) is an essential tool for detecting and characterizing thyroid nodules. In this study, we propose an innovative approach to enhance thyroid nodule assessment by integrating Doppler US images with grayscale US images through weakly supervised data augmentation networks (WSDAN). Our method reduces background noise by replacing inefficient augmentation strategies, such as random cropping, with an advanced technique guided by bounding boxes derived from Doppler US images. This targeted augmentation significantly improves model performance in both classification and localization of thyroid nodules. The training dataset comprises 1288 paired grayscale and Doppler US images, with an additional 190 pairs used for three-fold cross-validation. To evaluate the model's efficacy, we tested it on a separate set of 190 grayscale US images. Compared to five state-of-the-art models and the original WSDAN, our Enhanced WSDAN model achieved superior performance. For classification, it reached an accuracy of 91%. For localization, it achieved Dice and Jaccard indices of 75% and 87%, respectively, demonstrating its potential as a valuable clinical tool.

Prediction Crohn's Disease Activity Using Computed Tomography Enterography-Based Radiomics and Serum Markers.

Wang P, Liu Y, Wang Y

pubmed logopapersJun 30 2025
Accurate stratification of the activity index of Crohn's disease (CD) using computed tomography enterography (CTE) radiomics and serum markers can aid in predicting disease progression and assist physicians in personalizing therapeutic regimens for patients with CD. This retrospective study enrolled 233 patients diagnosed with CD between January 2019 and August 2024. Patients were divided into training and testing cohorts at a ratio of 7:3 and further categorized into remission, mild active phase, and moderate-severe active phase groups based on simple endoscopic score for CD (SEC-CD). Radiomics features were extracted from CTE venous images, and T-test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The serum markers were selected based on the variance analysis. We also developed a random forest (RF) model for multi-class stratification of CD. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and quantified the contribution of each feature in the dataset to CD activity via Shapley additive exPlanations (SHAP) values. Finally, we enrolled gender, radiomics scores, and serum scores to develop a nomogram model to verify the effectiveness of feature extraction. 14 non-zero coefficient radiomics features and six serum markers with significant differences (P<0.01) were ultimately selected to predict CD activity. The AUC (micro/macro) for the ensemble machine learning model combining the radiomics features and serum markers is 0.931/0.928 for three-class. The AUC for the remission phase, the mild active phase, and the moderate-severe active phase were 0.983, 0.852, and 0.917, respectively. The mean AUC for the nomogram model was 0.940. A radiomics model was developed by integrating radiomics and serum markers of CD patients, achieving enhanced consistency with SEC-CD in grade CD. This model has the potential to assist clinicians in accurate diagnosis and treatment.

A Hierarchical Slice Attention Network for Appendicitis Classification in 3D CT Scans

Chia-Wen Huang, Haw Hwai, Chien-Chang Lee, Pei-Yuan Wu

arxiv logopreprintJun 29 2025
Timely and accurate diagnosis of appendicitis is critical in clinical settings to prevent serious complications. While CT imaging remains the standard diagnostic tool, the growing number of cases can overwhelm radiologists, potentially causing delays. In this paper, we propose a deep learning model that leverages 3D CT scans for appendicitis classification, incorporating Slice Attention mechanisms guided by external 2D datasets to enhance small lesion detection. Additionally, we introduce a hierarchical classification framework using pre-trained 2D models to differentiate between simple and complicated appendicitis. Our approach improves AUC by 3% for appendicitis and 5.9% for complicated appendicitis, offering a more efficient and reliable diagnostic solution compared to previous work.

Automated Evaluation of Female Pelvic Organ Descent on Transperineal Ultrasound: Model Development and Validation.

Wu S, Wu J, Xu Y, Tan J, Wang R, Zhang X

pubmed logopapersJun 28 2025
Transperineal ultrasound (TPUS) is a widely used tool for evaluating female pelvic organ prolapse (POP), but its accurate interpretation relies on experience, causing diagnostic variability. This study aims to develop and validate a multi-task deep learning model to automate POP assessment using TPUS images. TPUS images from 1340 female patients (January-June 2023) were evaluated by two experienced physicians. The presence and severity of cystocele, uterine prolapse, rectocele, and excessive mobility of perineal body (EMoPB) were documented. After preprocessing, 1072 images were used for training and 268 for validation. The model used ResNet34 as the feature extractor and four parallel fully connected layers to predict the conditions. Model performance was assessed using confusion matrix and area under the curve (AUC). Gradient-weighted class activation mapping (Grad-CAM) visualized the model's focus areas. The model demonstrated strong diagnostic performance, with accuracies and AUC values as follows: cystocele, 0.869 (95% CI, 0.824-0.905) and 0.947 (95% CI, 0.930-0.962); uterine prolapse, 0.799 (95% CI, 0.746-0.842) and 0.931 (95% CI, 0.911-0.948); rectocele, 0.978 (95% CI, 0.952-0.990) and 0.892 (95% CI, 0.849-0.927); and EMoPB, 0.869 (95% CI, 0.824-0.905) and 0.942 (95% CI, 0.907-0.967). Grad-CAM heatmaps revealed that the model's focus areas were consistent with those observed by human experts. This study presents a multi-task deep learning model for automated POP assessment using TPUS images, showing promising efficacy and potential to benefit a broader population of women.

Non-contrast computed tomography radiomics model to predict benign and malignant thyroid nodules with lobe segmentation: A dual-center study.

Wang H, Wang X, Du YS, Wang Y, Bai ZJ, Wu D, Tang WL, Zeng HL, Tao J, He J

pubmed logopapersJun 28 2025
Accurate preoperative differentiation of benign and malignant thyroid nodules is critical for optimal patient management. However, conventional imaging modalities present inherent diagnostic limitations. To develop a non-contrast computed tomography-based machine learning model integrating radiomics and clinical features for preoperative thyroid nodule classification. This multicenter retrospective study enrolled 272 patients with thyroid nodules (376 thyroid lobes) from center A (May 2021-April 2024), using histopathological findings as the reference standard. The dataset was stratified into a training cohort (264 lobes) and an internal validation cohort (112 lobes). Additional prospective temporal (97 lobes, May-August 2024, center A) and external multicenter (81 lobes, center B) test cohorts were incorporated to enhance generalizability. Thyroid lobes were segmented along the isthmus midline, with segmentation reliability confirmed by an intraclass correlation coefficient (≥ 0.80). Radiomics feature extraction was performed using Pearson correlation analysis followed by least absolute shrinkage and selection operator regression with 10-fold cross-validation. Seven machine learning algorithms were systematically evaluated, with model performance quantified through the area under the receiver operating characteristic curve (AUC), Brier score, decision curve analysis, and DeLong test for comparison with radiologists interpretations. Model interpretability was elucidated using SHapley Additive exPlanations (SHAP). The extreme gradient boosting model demonstrated robust diagnostic performance across all datasets, achieving AUCs of 0.899 [95% confidence interval (CI): 0.845-0.932] in the training cohort, 0.803 (95%CI: 0.715-0.890) in internal validation, 0.855 (95%CI: 0.775-0.935) in temporal testing, and 0.802 (95%CI: 0.664-0.939) in external testing. These results were significantly superior to radiologists assessments (AUCs: 0.596, 0.529, 0.558, and 0.538, respectively; <i>P</i> < 0.001 by DeLong test). SHAP analysis identified radiomic score, age, tumor size stratification, calcification status, and cystic components as key predictive features. The model exhibited excellent calibration (Brier scores: 0.125-0.144) and provided significant clinical net benefit at decision thresholds exceeding 20%, as evidenced by decision curve analysis. The non-contrast computed tomography-based radiomics-clinical fusion model enables robust preoperative thyroid nodule classification, with SHAP-driven interpretability enhancing its clinical applicability for personalized decision-making.

Prognostic value of body composition out of PSMA-PET/CT in prostate cancer patients undergoing PSMA-therapy.

Roll W, Plagwitz L, Ventura D, Masthoff M, Backhaus C, Varghese J, Rahbar K, Schindler P

pubmed logopapersJun 28 2025
This retrospective study aims to develop a deep learning-based approach to whole-body CT segmentation out of standard PSMA-PET-CT to assess body composition in metastatic castration resistant prostate cancer (mCRPC) patients prior to [<sup>177</sup>Lu]Lu-PSMA radioligand therapy (RLT). Our goal is to go beyond standard PSMA-PET-based pretherapeutic assessment and identify additional body composition metrics out of the CT-component, with potential prognostic value. We used a deep learning segmentation model to perform fully automated segmentation of different tissue compartments, including visceral- (VAT), subcutaneous- (SAT), intra/intermuscular- adipose tissue (IMAT) from [<sup>68</sup> Ga]Ga-PSMA-PET-CT scans of n = 86 prostate cancer patients before RLT. The proportions of different adipose tissue compartments to total adipose tissue (TAT) assessed on a 3D CT-volume of the abdomen or on a 2D single slice basis (centered at third lumbal vertebra (L3)) were compared for their prognostic value. First, univariate and multivariate Cox proportional hazards regression analyses were performed. Subsequently, the subjects were dichotomized at the median tissue composition, and these subgroups were evaluated by Kaplan-Meier analysis with the log-rank test. The automated segmentation model was useful for delineating different adipose tissue compartments and skeletal muscle across different patient anatomies. Analyses revealed significant correlations between lower SAT and higher IMAT ratios and poorer therapeutic outcomes in Cox regression analysis (SAT/TAT: p = 0.038; IMAT/TAT: p < 0.001) in the 3D model. In the single slice approach only IMAT/SAT was significantly associated with survival in Cox regression analysis (p < 0.001; SAT/TAT: p > 0.05). IMAT ratio remained an independent predictor of survival in multivariate analysis when including PSMA-PET and blood-based prognostic factors. In this proof-of-principle study the implementation of a deep learning-based whole-body analysis provides a robust and detailed CT-based assessment of body composition in mCRPC patients undergoing RLT. Potential prognostic parameters have to be corroborated in larger prospective datasets.

3D Auto-segmentation of pancreas cancer and surrounding anatomical structures for surgical planning.

Rhu J, Oh N, Choi GS, Kim JM, Choi SY, Lee JE, Lee J, Jeong WK, Min JH

pubmed logopapersJun 27 2025
This multicenter study aimed to develop a deep learning-based autosegmentation model for pancreatic cancer and surrounding anatomical structures using computed tomography (CT) to enhance surgical planning. We included patients with pancreatic cancer who underwent pancreatic surgery at three tertiary referral hospitals. A hierarchical Swin Transformer V2 model was implemented to segment the pancreas, pancreatic cancers, and peripancreatic structures from preoperative contrast-enhanced CT scans. Data was divided into training and internal validation sets at a 3:1 ratio (from one tertiary institution), with separately prepared external validation set (from two separate institutions). Segmentation performance was quantitatively assessed using the dice similarity coefficient (DSC) and qualitatively evaluated (complete vs partial vs absent). A total of 275 patients (51.6% male, mean age 65.8 ± 9.5 years) were included (176 training group, 59 internal validation group, and 40 external validation group). No significant differences in baseline characteristics were observed between the groups. The model achieved an overall mean DSC of 75.4 ± 6.0 and 75.6 ± 4.8 in the internal and external validation groups, respectively. It showed high accuracy particularly in the pancreas parenchyma (84.8 ± 5.3 and 86.1 ± 4.1) and lower accuracy in pancreatic cancer (57.0 ± 28.7 and 54.5 ± 23.5). The DSC scores for pancreatic cancer tended to increase with larger tumor sizes. Moreover, the qualitative assessments revealed high accuracy in the superior mesenteric artery (complete segmentation, 87.5%-100%), portal and superior mesenteric vein (97.5%-100%), pancreas parenchyma (83.1%-87.5%), but lower accuracy in cancers (62.7%-65.0%). The deep learning-based autosegmentation model for 3D visualization of pancreatic cancer and peripancreatic structures showed robust performance. Further improvement will enhance many promising applications in clinical research.
Page 37 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.