Sort by:
Page 35 of 3523516 results

Construction and validation of a urinary stone composition prediction model based on machine learning.

Guo J, Zhang J, Zhang J, Xu C, Wang X, Liu C

pubmed logopapersAug 11 2025
The composition of urinary calculi serves as a critical determinant for personalized surgical strategies; however, such compositional data are often unavailable preoperatively. This study aims to develop a machine learning-based preoperative prediction model for stone composition and evaluate its clinical utility. A retrospective cohort study design was employed to include patients with urinary calculi admitted to the Department of Urology at the Second Affiliated Hospital of Zhengzhou University from 2019 to 2024. Feature selection was performed using least absolute shrinkage and selection operator (LASSO) regression combined with multivariate logistic regression, and a binary prediction model for urinary calculi was subsequently constructed. Model validation was conducted using metrics such as the area under the curve (AUC), while Shapley Additive Explanations(SHAP) values were applied to interpret the predictive outcomes. Among 708 eligible patients, distinct prediction models were established for four stone types: calcium oxalate stones: Logistic regression achieved optimal performance (AUC = 0.845), with maximum stone CT value, 24-hour urinary oxalate, and stone size as top predictors (SHAP-ranked); infection stones: Logistic regression (AUC = 0.864) prioritized stone size, urinary pH, and recurrence history; uric acid stones: LASSO-ridge-elastic net model demonstrated exceptional accuracy (AUC = 0.961), driven by maximum CT value, 24-hour oxalate, and urinary calcium; calcium-containing stones: Logistic regression attained better prediction (AUC = 0.953), relying on CT value, 24-hour calcium, and stone size. This study developed a machine learning prediction model based on multi-algorithm integration, achieving accurate preoperative discrimination of urinary stone composition. The integration of key imaging features with metabolic indicators enhanced the model's predictive performance.

ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Impression Generation on Multi-institution and Multi-system Data.

Zhong T, Zhao W, Zhang Y, Pan Y, Dong P, Jiang Z, Jiang H, Zhou Y, Kui X, Shang Y, Zhao L, Yang L, Wei Y, Li Z, Zhang J, Yang L, Chen H, Zhao H, Liu Y, Zhu N, Li Y, Wang Y, Yao J, Wang J, Zeng Y, He L, Zheng C, Zhang Z, Li M, Liu Z, Dai H, Wu Z, Zhang L, Zhang S, Cai X, Hu X, Zhao S, Jiang X, Zhang X, Liu W, Li X, Zhu D, Guo L, Shen D, Han J, Liu T, Liu J, Zhang T

pubmed logopapersAug 11 2025
Achieving clinical level performance and widespread deployment for generating radiology impressions encounters a giant challenge for conventional artificial intelligence models tailored to specific diseases and organs. Concurrent with the increasing accessibility of radiology reports and advancements in modern general AI techniques, the emergence and potential of deployable radiology AI exploration have been bolstered. Here, we present ChatRadio-Valuer, the first general radiology diagnosis large language model for localized deployment within hospitals and being close to clinical use for multi-institution and multi-system diseases. ChatRadio-Valuer achieved 15 state-of-the-art results across five human systems and six institutions in clinical-level events (n=332,673) through rigorous and full-spectrum assessment, including engineering metrics, clinical validation, and efficiency evaluation. Notably, it exceeded OpenAI's GPT-3.5 and GPT-4 models, achieving superior performance in comprehensive disease diagnosis compared to the average level of radiology experts. Besides, ChatRadio-Valuer supports zero-shot transfer learning, greatly boosting its effectiveness as a radiology assistant, while ensuring adherence to privacy standards and being readily utilized for large-scale patient populations. Our expeditions suggest the development of localized LLMs would become an imperative avenue in hospital applications.

MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer

Tao Tang, Chengxu Yang

arxiv logopreprintAug 11 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.

MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer

Tao Tang, Chengxu Yang

arxiv logopreprintAug 11 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.

Anatomy-Aware Low-Dose CT Denoising via Pretrained Vision Models and Semantic-Guided Contrastive Learning

Runze Wang, Zeli Chen, Zhiyun Song, Wei Fang, Jiajin Zhang, Danyang Tu, Yuxing Tang, Minfeng Xu, Xianghua Ye, Le Lu, Dakai Jin

arxiv logopreprintAug 11 2025
To reduce radiation exposure and improve the diagnostic efficacy of low-dose computed tomography (LDCT), numerous deep learning-based denoising methods have been developed to mitigate noise and artifacts. However, most of these approaches ignore the anatomical semantics of human tissues, which may potentially result in suboptimal denoising outcomes. To address this problem, we propose ALDEN, an anatomy-aware LDCT denoising method that integrates semantic features of pretrained vision models (PVMs) with adversarial and contrastive learning. Specifically, we introduce an anatomy-aware discriminator that dynamically fuses hierarchical semantic features from reference normal-dose CT (NDCT) via cross-attention mechanisms, enabling tissue-specific realism evaluation in the discriminator. In addition, we propose a semantic-guided contrastive learning module that enforces anatomical consistency by contrasting PVM-derived features from LDCT, denoised CT and NDCT, preserving tissue-specific patterns through positive pairs and suppressing artifacts via dual negative pairs. Extensive experiments conducted on two LDCT denoising datasets reveal that ALDEN achieves the state-of-the-art performance, offering superior anatomy preservation and substantially reducing over-smoothing issue of previous work. Further validation on a downstream multi-organ segmentation task (encompassing 117 anatomical structures) affirms the model's ability to maintain anatomical awareness.

Diffusing the Blind Spot: Uterine MRI Synthesis with Diffusion Models

Johanna P. Müller, Anika Knupfer, Pedro Blöss, Edoardo Berardi Vittur, Bernhard Kainz, Jana Hutter

arxiv logopreprintAug 11 2025
Despite significant progress in generative modelling, existing diffusion models often struggle to produce anatomically precise female pelvic images, limiting their application in gynaecological imaging, where data scarcity and patient privacy concerns are critical. To overcome these barriers, we introduce a novel diffusion-based framework for uterine MRI synthesis, integrating both unconditional and conditioned Denoising Diffusion Probabilistic Models (DDPMs) and Latent Diffusion Models (LDMs) in 2D and 3D. Our approach generates anatomically coherent, high fidelity synthetic images that closely mimic real scans and provide valuable resources for training robust diagnostic models. We evaluate generative quality using advanced perceptual and distributional metrics, benchmarking against standard reconstruction methods, and demonstrate substantial gains in diagnostic accuracy on a key classification task. A blinded expert evaluation further validates the clinical realism of our synthetic images. We release our models with privacy safeguards and a comprehensive synthetic uterine MRI dataset to support reproducible research and advance equitable AI in gynaecology.

Using Machine Learning to Improve the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System Diagnosis of Hepatocellular Carcinoma in Indeterminate Liver Nodules.

Hoopes JR, Lyshchik A, Xiao TS, Berzigotti A, Fetzer DT, Forsberg F, Sidhu PS, Wessner CE, Wilson SR, Keith SW

pubmed logopapersAug 11 2025
Liver cancer ranks among the most lethal cancers. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and better diagnostic tools are needed to diagnose patients at risk. The aim is to develop a machine learning algorithm that enhances the sensitivity and specificity of the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System (CEUS-LIRADS) in classifying indeterminate at-risk liver nodules (LR-M, LR-3, LR-4) as HCC or non-HCC. Our study includes patients at risk for HCC with untreated indeterminate focal liver observations detected on US or contrast-enhanced CT or MRI performed as part of their clinical standard of care from January 2018 to November 2022. Recursive partitioning was used to improve HCC diagnosis in indeterminate at-risk nodules. Demographics, blood biomarkers, and CEUS imaging features were evaluated as potential predictors for the algorithm to classify nodules as HCC or non-HCC. We evaluated 244 indeterminate liver nodules from 224 patients (mean age 62.9 y). Of the nodules, 73.2% (164/224) were from males. The algorithm was trained on a random 2/3 partition of 163 liver nodules and correctly reclassified more than half of the HCC liver nodules previously categorized as indeterminate in the independent 1/3 test partition of 81 liver nodules, achieving a sensitivity of 56.3% (95% CI: 42.0%, 70.2%) and specificity of 93.9% (95% CI: 84.4%, 100.0%). Machine learning was applied to the multicenter, multinational study of CEUS LI-RADS indeterminate at-risk liver nodules and correctly diagnosed HCC in more than half of the HCC nodules.

Automated Prediction of Bone Volume Removed in Mastoidectomy.

Nagururu NV, Ishida H, Ding AS, Ishii M, Unberath M, Taylor RH, Munawar A, Sahu M, Creighton FX

pubmed logopapersAug 11 2025
The bone volume drilled by surgeons during mastoidectomy is determined by the need to localize the position, optimize the view, and reach the surgical endpoint while avoiding critical structures. Predicting the volume of bone removed before an operation can significantly enhance surgical training by providing precise, patient-specific guidance and enable the development of more effective computer-assisted and robotic surgical interventions. Single institution, cross-sectional. VR simulation. We developed a deep learning pipeline to automate the prediction of bone volume removed during mastoidectomy using data from virtual reality mastoidectomy simulations. The data set included 15 deidentified temporal bone computed tomography scans. The network was evaluated using fivefold cross-validation, comparing predicted and actual bone removal with metrics such as the Dice score (DSC) and Hausdorff distance (HD). Our method achieved a median DSC of 0.775 (interquartile range [IQR]: 0.725-0.810) and a median HD of 0.492 mm (IQR: 0.298-0.757 mm). Predictions reached the mastoidectomy endpoint of visualizing the horizontal canal and incus in 80% (12/15) of temporal bones. Qualitative analysis indicated that predictions typically produced realistic mastoidectomy endpoints, though some cases showed excessive or insufficient bone removal, particularly at the temporal bone cortex and tegmen mastoideum. This study establishes a foundational step in using deep learning to predict bone volume removal during mastoidectomy. The results indicate that learning-based methods can reasonably approximate the surgical endpoint of mastoidectomy. Further refinement with larger, more diverse data sets and improved model architectures will be essential for enhancing prediction accuracy.

MedReasoner: Reinforcement Learning Drives Reasoning Grounding from Clinical Thought to Pixel-Level Precision

Zhonghao Yan, Muxi Diao, Yuxuan Yang, Jiayuan Xu, Kaizhou Zhang, Ruoyan Jing, Lele Yang, Yanxi Liu, Kongming Liang, Zhanyu Ma

arxiv logopreprintAug 11 2025
Accurately grounding regions of interest (ROIs) is critical for diagnosis and treatment planning in medical imaging. While multimodal large language models (MLLMs) combine visual perception with natural language, current medical-grounding pipelines still rely on supervised fine-tuning with explicit spatial hints, making them ill-equipped to handle the implicit queries common in clinical practice. This work makes three core contributions. We first define Unified Medical Reasoning Grounding (UMRG), a novel vision-language task that demands clinical reasoning and pixel-level grounding. Second, we release U-MRG-14K, a dataset of 14K samples featuring pixel-level masks alongside implicit clinical queries and reasoning traces, spanning 10 modalities, 15 super-categories, and 108 specific categories. Finally, we introduce MedReasoner, a modular framework that distinctly separates reasoning from segmentation: an MLLM reasoner is optimized with reinforcement learning, while a frozen segmentation expert converts spatial prompts into masks, with alignment achieved through format and accuracy rewards. MedReasoner achieves state-of-the-art performance on U-MRG-14K and demonstrates strong generalization to unseen clinical queries, underscoring the significant promise of reinforcement learning for interpretable medical grounding.

PrIINeR: Towards Prior-Informed Implicit Neural Representations for Accelerated MRI

Ziad Al-Haj Hemidi, Eytan Kats, Mattias P. Heinrich

arxiv logopreprintAug 11 2025
Accelerating Magnetic Resonance Imaging (MRI) reduces scan time but often degrades image quality. While Implicit Neural Representations (INRs) show promise for MRI reconstruction, they struggle at high acceleration factors due to weak prior constraints, leading to structural loss and aliasing artefacts. To address this, we propose PrIINeR, an INR-based MRI reconstruction method that integrates prior knowledge from pre-trained deep learning models into the INR framework. By combining population-level knowledge with instance-based optimization and enforcing dual data consistency, PrIINeR aligns both with the acquired k-space data and the prior-informed reconstruction. Evaluated on the NYU fastMRI dataset, our method not only outperforms state-of-the-art INR-based approaches but also improves upon several learning-based state-of-the-art methods, significantly improving structural preservation and fidelity while effectively removing aliasing artefacts.PrIINeR bridges deep learning and INR-based techniques, offering a more reliable solution for high-quality, accelerated MRI reconstruction. The code is publicly available on https://github.com/multimodallearning/PrIINeR.
Page 35 of 3523516 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.