Sort by:
Page 35 of 41408 results

Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study.

Jeong HJ, Seol A, Lee S, Lim H, Lee M, Oh SJ

pubmed logopapersMay 19 2025
We aimed to prospectively investigate whether bladder volume measured using deep learning artificial intelligence (AI) algorithms (AI-BV) is more accurate than that measured using conventional methods (C-BV) if using a portable ultrasound bladder scanner (PUBS). Patients who underwent filling cystometry because of lower urinary tract symptoms between January 2021 and July 2022 were enrolled. Every time the bladder was filled serially with normal saline from 0 mL to maximum cystometric capacity in 50 mL increments, C-BV was measured using PUBS. Ultrasound images obtained during this process were manually annotated to define the bladder contour, which was used to build a deep learning AI model. The true bladder volume (T-BV) for each bladder volume range was compared with C-BV and AI-BV for analysis. We enrolled 250 patients (213 men and 37 women), and a deep learning AI model was established using 1912 bladder images. There was a significant difference between C-BV (205.5 ± 170.8 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.001), but no significant difference between AI-BV (197.0 ± 161.1 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.081). In bladder volume ranges of 101-150, 151-200, and 201-300 mL, there were significant differences in the percentage of volume differences between [C-BV and T-BV] and [AI-BV and T-BV] (p < 0.05), but no significant difference if converted to absolute values (p > 0.05). C-BV (R<sup>2</sup> = 0.91, p < 0.001) and AI-BV (R<sup>2</sup> = 0.90, p < 0.001) were highly correlated with T-BV. The mean difference between AI-BV and T-BV (6.5 ± 50.4) was significantly smaller than that between C-BV and T-BV (15.0 ± 50.9) (p = 0.001). Following image pre-processing, deep learning AI-BV more accurately estimated true BV than conventional methods in this selected cohort on internal validation. Determination of the clinical relevance of these findings and performance in external cohorts requires further study. The clinical trial was conducted using an approved product for its approved indication, so approval from the Ministry of Food and Drug Safety (MFDS) was not required. Therefore, there is no clinical trial registration number.

Prediction of prognosis of immune checkpoint inhibitors combined with anti-angiogenic agents for unresectable hepatocellular carcinoma by machine learning-based radiomics.

Xu X, Jiang X, Jiang H, Yuan X, Zhao M, Wang Y, Chen G, Li G, Duan Y

pubmed logopapersMay 19 2025
This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging (MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not been previously explored using MRI-based radiomics. 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The optimal calculation method was selected by comparing the Harrell's concordance index (C-index) values. The Rad-score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to assess the forecast ability of the risk models. The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient stratification and personalized treatment strategies. Based on the risk level, the participants were classified into two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant difference between the groups (P < 0.01). The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective clinical outcomes.

ChatGPT-4-Driven Liver Ultrasound Radiomics Analysis: Advantages and Drawbacks Compared to Traditional Techniques.

Sultan L, Venkatakrishna SSB, Anupindi S, Andronikou S, Acord M, Otero H, Darge K, Sehgal C, Holmes J

pubmed logopapersMay 18 2025
Artificial intelligence (AI) is transforming medical imaging, with large language models such as ChatGPT-4 emerging as potential tools for automated image interpretation. While AI-driven radiomics has shown promise in diagnostic imaging, the efficacy of ChatGPT-4 in liver ultrasound analysis remains largely unexamined. This study evaluates the capability of ChatGPT-4 in liver ultrasound radiomics, specifically its ability to differentiate fibrosis, steatosis, and normal liver tissue, compared to conventional image analysis software. Seventy grayscale ultrasound images from a preclinical liver disease model, including fibrosis (n=31), fatty liver (n=18), and normal liver (n=21), were analyzed. ChatGPT-4 extracted texture features, which were compared to those obtained using Interactive Data Language (IDL), a traditional image analysis software. One-way ANOVA was used to identify statistically significant features differentiating liver conditions, and logistic regression models were employed to assess diagnostic performance. ChatGPT-4 extracted nine key textural features-echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity, dissimilarity, angular second moment, and entropy-all of which significantly differed across liver conditions (p < 0.05). Among individual features, echo intensity achieved the highest F1-score (0.85). When combined, ChatGPT-4 attained 76% accuracy and 83% sensitivity in classifying liver disease. ROC analysis demonstrated strong discriminatory performance, with AUC values of 0.75 for fibrosis, 0.87 for normal liver, and 0.97 for steatosis. Compared to Interactive Data Language (IDL) image analysis software, ChatGPT-4 exhibited slightly lower sensitivity (0.83 vs. 0.89) but showed moderate correlation (R = 0.68, p < 0.0001) with IDL-derived features. However, it significantly outperformed IDL in processing efficiency, reducing analysis time by 40%, highlighting its potential for high throughput radiomic analysis. Despite slightly lower sensitivity than IDL, ChatGPT-4 demonstrated high feasibility for ultrasound radiomics, offering faster processing, high-throughput analysis, and automated multi-image evaluation. These findings support its potential integration into AI-driven imaging workflows, with further refinements needed to enhance feature reproducibility and diagnostic accuracy.

Machine Learning-Based Dose Prediction in [<sup>177</sup>Lu]Lu-PSMA-617 Therapy by Integrating Biomarkers and Radiomic Features from [<sup>68</sup>Ga]Ga-PSMA-11 PET/CT.

Yazdani E, Sadeghi M, Karamzade-Ziarati N, Jabari P, Amini P, Vosoughi H, Akbari MS, Asadi M, Kheradpisheh SR, Geramifar P

pubmed logopapersMay 18 2025
The study aimed to develop machine learning (ML) models for pretherapy prediction of absorbed doses (ADs) in kidneys and tumoral lesions for metastatic castration-resistant prostate cancer (mCRPC) patients undergoing [<sup>177</sup>Lu]Lu-PSMA-617 (Lu-PSMA) radioligand therapy (RLT). By leveraging radiomic features (RFs) from [<sup>68</sup>Ga]Ga-PSMA-11 (Ga-PSMA) PET/CT scans and clinical biomarkers (CBs), the approach has the potential to improve patient selection and tailor dosimetry-guided therapy. Twenty patients with mCRPC underwent Ga-PSMA PET/CT scans prior to the administration of an initial 6.8±0.4 GBq dose of the first Lu-PSMA RLT cycle. Post-therapy dosimetry involved sequential scintigraphy imaging at approximately 4, 48, and 72 h, along with a SPECT/CT image at around 48 h, to calculate time-integrated activity (TIA) coefficients. Monte Carlo (MC) simulations, leveraging the Geant4 application for tomographic emission (GATE) toolkit, were employed to derive ADs. The ML models were trained using pretherapy RFs from Ga-PSMA PET/CT and CBs as input, while the ADs in kidneys and lesions (n=130), determined using MC simulations from scintigraphy and SPECT imaging, served as the ground truth. Model performance was assessed through leave-one-out cross-validation (LOOCV), with evaluation metrics including R² and root mean squared error (RMSE). The mean delivered ADs were 0.88 ± 0.34 Gy/GBq for kidneys and 2.36 ± 2.10 Gy/GBq for lesions. Combining CBs with the best RFs produced optimal results: the extra trees regressor (ETR) was the best ML model for predicting kidney ADs, achieving an RMSE of 0.11 Gy/GBq and an R² of 0.87. For lesion ADs, the gradient boosting regressor (GBR) performed best, with an RMSE of 1.04 Gy/GBq and an R² of 0.77. Integrating pretherapy Ga-PSMA PET/CT RFs with CBs shows potential in predicting ADs in RLT. To personalize treatment planning and enhance patient stratification, it is crucial to validate these preliminary findings with a larger sample size and an independent cohort.

OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography

Hanchen Wang, Yixuan Wu, Yinan Feng, Peng Jin, Shihang Feng, Yiming Mao, James Wiskin, Baris Turkbey, Peter A. Pinto, Bradford J. Wood, Songting Luo, Yinpeng Chen, Emad Boctor, Youzuo Lin

arxiv logopreprintMay 18 2025
Prostate cancer is one of the most common and lethal cancers among men, making its early detection critically important. Although ultrasound imaging offers greater accessibility and cost-effectiveness compared to MRI, traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors. Ultrasound computed tomography provides quantitative tissue characterization, but its clinical implementation faces significant challenges, particularly under anatomically constrained limited-angle acquisition conditions specific to prostate imaging. To address these unmet needs, we introduce OpenPros, the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT. Our dataset includes over 280,000 paired samples of realistic 2D speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by medical experts. Simulations are conducted under clinically realistic configurations using advanced finite-difference time-domain and Runge-Kutta acoustic wave solvers, both provided as open-source components. Through comprehensive baseline experiments, we demonstrate that state-of-the-art deep learning methods surpass traditional physics-based approaches in both inference efficiency and reconstruction accuracy. Nevertheless, current deep learning models still fall short of delivering clinically acceptable high-resolution images with sufficient accuracy. By publicly releasing OpenPros, we aim to encourage the development of advanced machine learning algorithms capable of bridging this performance gap and producing clinically usable, high-resolution, and highly accurate prostate ultrasound images. The dataset is publicly accessible at https://open-pros.github.io/.

Deep learning feature-based model for predicting lymphovascular invasion in urothelial carcinoma of bladder using CT images.

Xiao B, Lv Y, Peng C, Wei Z, Xv Q, Lv F, Jiang Q, Liu H, Li F, Xv Y, He Q, Xiao M

pubmed logopapersMay 18 2025
Lymphovascular invasion significantly impacts the prognosis of urothelial carcinoma of the bladder. Traditional lymphovascular invasion detection methods are time-consuming and costly. This study aims to develop a deep learning-based model to preoperatively predict lymphovascular invasion status in urothelial carcinoma of bladder using CT images. Data and CT images of 577 patients across four medical centers were retrospectively collected. The largest tumor slices from the transverse, coronal, and sagittal planes were selected and used to train CNN models (InceptionV3, DenseNet121, ResNet18, ResNet34, ResNet50, and VGG11). Deep learning features were extracted and visualized using Grad-CAM. Principal Component Analysis reduced features to 64. Using the extracted features, Decision Tree, XGBoost, and LightGBM models were trained with 5-fold cross-validation and ensembled in a stacking model. Clinical risk factors were identified through logistic regression analyses and combined with DL scores to enhance lymphovascular invasion prediction accuracy. The ResNet50-based model achieved an AUC of 0.818 in the validation set and 0.708 in the testing set. The combined model showed an AUC of 0.794 in the validation set and 0.767 in the testing set, demonstrating robust performance across diverse data. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. This model offers a non-invasive, cost-effective tool to assist clinicians in personalized treatment planning. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. We developed a deep learning feature-based stacking model to predict lymphovascular invasion in urothelial carcinoma of the bladder patients using CT. Max cross sections from three dimensions of the CT image are used to train the CNN model. We made comparisons across six CNN networks, including ResNet50.

MRI-based radiomics for differentiating high-grade from low-grade clear cell renal cell carcinoma: a systematic review and meta-analysis.

Broomand Lomer N, Ghasemi A, Ahmadzadeh AM, A Torigian D

pubmed logopapersMay 17 2025
High-grade clear cell renal cell carcinoma (ccRCC) is linked to lower survival rates and more aggressive disease progression. This study aims to assess the diagnostic performance of MRI-derived radiomics as a non-invasive approach for pre-operative differentiation of high-grade from low-grade ccRCC. A systematic search was conducted across PubMed, Scopus, and Embase. Quality assessment was performed using QUADAS-2 and METRICS. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were estimated using a bivariate model. Separate meta-analyses were conducted for radiomics models and combined models, where the latter integrated clinical and radiological features with radiomics. Subgroup analysis was performed to identify potential sources of heterogeneity. Sensitivity analysis was conducted to identify potential outliers. A total of 15 studies comprising 2,265 patients were included, with seven and six studies contributing to the meta-analysis of radiomics and combined models, respectively. The pooled estimates of the radiomics model were as follows: sensitivity, 0.78; specificity, 0.84; PLR, 4.17; NLR, 0.28; DOR, 17.34; and AUC, 0.84. For the combined model, the pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.87, 0.81, 3.78, 0.21, 28.57, and 0.90, respectively. Radiomics models trained on smaller cohorts exhibited a significantly higher pooled specificity and PLR than those trained on larger cohorts. Also, radiomics models based on single-user segmentation demonstrated a significantly higher pooled specificity compared to multi-user segmentation. Radiomics has demonstrated potential as a non-invasive tool for grading ccRCC, with combined models achieving superior performance.

Evaluation of tumour pseudocapsule using computed tomography-based radiomics in pancreatic neuroendocrine tumours to predict prognosis and guide surgical strategy: a cohort study.

Wang Y, Gu W, Huang D, Zhang W, Chen Y, Xu J, Li Z, Zhou C, Chen J, Xu X, Tang W, Yu X, Ji S

pubmed logopapersMay 16 2025
To date, indications for a surgical approach of small pancreatic neuroendocrine tumours (PanNETs) remain controversial. This cohort study aimed to identify the pseudocapsule status preoperatively to estimate the rationality of enucleation and survival prognosis of PanNETs, particularly in small tumours. Clinicopathological data were collected from patients with PanNETs who underwent the first pancreatectomy at our hospital (n = 578) between February 2012 and September 2023. Kaplan-Meier curves were constructed to visualise prognostic differences. Five distinct tissue samples were obtained for single-cell RNA sequencing (scRNA-seq) to evaluate variations in the tumour microenvironment. Radiological features were extracted from preoperative arterial-phase contrast-enhanced computed tomography. The performance of the pseudocapsule radiomics model was assessed using the area under the curve (AUC) metric. 475 cases (mean [SD] age, 53.01 [12.20] years; female vs male, 1.24:1) were eligible for this study. The mean pathological diameter of tumour was 2.99 cm (median: 2.50 cm; interquartile range [IQR]: 1.50-4.00 cm). These cases were stratified into complete (223, 46.95%) and incomplete (252, 53.05%) pseudocapsule groups. A statistically significant difference in aggressive indicators was observed between the two groups (P < 0.001). Through scRNA-seq analysis, we identified that the incomplete group presented a markedly immunosuppressive microenvironment. Regarding the impact on recurrence-free survival, the 3-year and 5-year rates were 94.8% and 92.5%, respectively, for the complete pseudocapsule group, compared to 76.7% and 70.4% for the incomplete pseudocapsule group. The radiomics-predictive model has a significant discrimination for the state of the pseudocapsule, particularly in small tumours (AUC, 0.744; 95% CI, 0.652-0.837). By combining computed tomography-based radiomics and machine learning for preoperative identification of pseudocapsule status, the intact group is more likely to benefit from enucleation.

Technology Advances in the placement of naso-enteral tubes and in the management of enteral feeding in critically ill patients: a narrative study.

Singer P, Setton E

pubmed logopapersMay 16 2025
Enteral feeding needs secure access to the upper gastrointestinal tract, an evaluation of the gastric function to detect gastrointestinal intolerance, and a nutritional target to reach the patient's needs. Only in the last decades has progress been accomplished in techniques allowing an appropriate placement of the nasogastric tube, mainly reducing pulmonary complications. These techniques include point-of-care ultrasound (POCUS), electromagnetic sensors, real-time video-assisted placement, impedance sensors, and virtual reality. Again, POCUS is the most accessible tool available to evaluate gastric emptying, with antrum echo density measurement. Automatic measurements of gastric antrum content supported by deep learning algorithms and electric impedance provide gastric volume. Intragastric balloons can evaluate motility. Finally, advanced technologies have been tested to improve nutritional intake: Stimulation of the esophagus mucosa inducing contraction mimicking a contraction wave that may improve enteral nutrition efficacy, impedance sensors to detect gastric reflux and modulate the rate of feeding accordingly have been clinically evaluated. Use of electronic health records integrating nutritional needs, target, and administration is recommended.
Page 35 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.