Agreement between Routine-Dose and Lower-Dose CT with and without Deep Learning-based Denoising for Active Surveillance of Solid Small Renal Masses: A Multiobserver Study.
Authors
Affiliations (5)
Affiliations (5)
- Department of Radiology, Akershus University Hospital, Sykehusveien 25, 1478 Lorenskog, Norway.
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.
- Department of Urology, Akershus University Hospital, Lorenskog, Norway.
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.
Abstract
Purpose To assess the agreement between routine-dose (RD) and lower-dose (LD) contrast-enhanced CT scans, with and without Digital Imaging and Communications in Medicine-based deep learning-based denoising (DLD), in evaluating small renal masses (SRMs) during active surveillance. Materials and Methods In this retrospective study, CT scans from patients undergoing active surveillance for an SRM were included. Using a validated simulation technique, LD CT images were generated from the RD images to simulate 75% (LD75) and 90% (LD90) radiation dose reductions. Two additional LD image sets, in which the DLD was applied (LD75-DLD and LD90-DLD), were generated. Between January 2023 and June 2024, nine radiologists from three institutions independently evaluated 350 CT scans across five datasets for tumor size, tumor nearness to the collecting system (TN), and tumor shape irregularity (TSI), and interobserver reproducibility and agreement were assessed using the 95% limits of agreement with the mean (LOAM) and Gwet AC2 coefficient, respectively. Subjective and quantitative image quality assessments were also performed. Results The study sample included 70 patients (mean age, 73.2 years ± 9.2 [SD]; 48 male, 22 female). LD75 CT was found to be in agreement with RD scans for assessing SRM diameter, with a LOAM of ±2.4 mm (95% CI: 2.3, 2.6) for LD75 compared with ±2.2 mm (95% CI: 2.1, 2.4) for RD. However, a 90% dose reduction compromised reproducibility (LOAM ±3.0 mm; 95% CI: 2.8, 3.2). LD90-DLD preserved measurement reproducibility (LOAM ±2.4 mm; 95% CI: 2.3, 2.6). Observer agreement was comparable between TN and TSI assessments across all image sets, with no statistically significant differences identified (all comparisons <i>P</i> ≥ .35 for TN and <i>P</i> ≥ .02 for TSI; Holm-corrected significance threshold, <i>P</i> = .013). Subjective and quantitative image quality assessments confirmed that DLD effectively restored image quality at reduced dose levels: LD75-DLD had the highest overall image quality, significantly lower noise, and improved contrast-to-noise ratio compared with RD (<i>P</i> < .001). Conclusion A 75% reduction in radiation dose is feasible for SRM assessment in active surveillance using CT with a conventional iterative reconstruction technique, whereas applying DLD allows submillisievert dose reduction. <b>Keywords:</b> CT, Urinary, Kidney, Radiation Safety, Observer Performance, Technology Assessment <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Muglia in this issue.