Sort by:
Page 345 of 3463455 results

Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Sun J, Wu X, Zhang X, Huang W, Zhong X, Li X, Xue K, Liu S, Chen X, Li W, Liu X, Shen H, You J, He W, Jin Z, Yu L, Li Y, Zhang S, Zhang B

pubmed logopapersJan 1 2025
<b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.

Enhancing Disease Detection in Radiology Reports Through Fine-tuning Lightweight LLM on Weak Labels.

Wei Y, Wang X, Ong H, Zhou Y, Flanders A, Shih G, Peng Y

pubmed logopapersJan 1 2025
Despite significant progress in applying large language models (LLMs) to the medical domain, several limitations still prevent them from practical applications. Among these are the constraints on model size and the lack of cohort-specific labeled datasets. In this work, we investigated the potential of improving a lightweight LLM, such as Llama 3.1-8B, through fine-tuning with datasets using synthetic labels. Two tasks are jointly trained by combining their respective instruction datasets. When the quality of the task-specific synthetic labels is relatively high (e.g., generated by GPT4-o), Llama 3.1-8B achieves satisfactory performance on the open-ended disease detection task, with a micro F1 score of 0.91. Conversely, when the quality of the task-relevant synthetic labels is relatively low (e.g., from the MIMIC-CXR dataset), fine-tuned Llama 3.1-8B is able to surpass its noisy teacher labels (micro F1 score of 0.67 v.s. 0.63) when calibrated against curated labels, indicating the strong inherent underlying capability of the model. These findings demonstrate the potential offine-tuning LLMs with synthetic labels, offering a promising direction for future research on LLM specialization in the medical domain.

3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network.

Wang T, Wu T, Yang D, Xu Y, Lv D, Jiang T, Wang H, Chen Q, Xu S, Yan Y, Lin B

pubmed logopapersJan 1 2025
To enhance glioma segmentation, a 3D-MRI intelligent glioma segmentation method based on deep learning is introduced. This method offers significant guidance for medical diagnosis, grading, and treatment strategy selection. Glioma case data were sourced from the BraTS2023 public dataset. Firstly, we preprocess the dataset, including 3D clipping, resampling, artifact elimination and normalization. Secondly, in order to enhance the perception ability of the network to different scale features, we introduce the space pyramid pool module. Then, by making the model focus on glioma details and suppressing irrelevant background information, we propose a multi-scale fusion attention mechanism; And finally, to address class imbalance and enhance learning of misclassified voxels, a combination of Dice and Focal loss functions was employed, creating a loss function, this method not only maintains the accuracy of segmentation, It also improves the recognition of challenge samples, thus improving the accuracy and generalization of the model in glioma segmentation. Experimental findings reveal that the enhanced 3D U-Net network model stabilizes training loss at 0.1 after 150 training iterations. The refined model demonstrates superior performance with the highest DSC, Recall, and Precision values of 0.7512, 0.7064, and 0.77451, respectively. In Whole Tumor (WT) segmentation, the Dice Similarity Coefficient (DSC), Recall, and Precision scores are 0.9168, 0.9426, and 0.9375, respectively. For Core Tumor (TC) segmentation, these scores are 0.8954, 0.9014, and 0.9369, respectively. In Enhanced Tumor (ET) segmentation, the method achieves DSC, Recall, and Precision values of 0.8674, 0.9045, and 0.9011, respectively. The DSC, Recall, and Precision indices in the WT, TC, and ET segments using this method are the highest recorded, significantly enhancing glioma segmentation. This improvement bolsters the accuracy and reliability of diagnoses, ultimately providing a scientific foundation for clinical diagnosis and treatment.

Radiomics of Dynamic Contrast-Enhanced MRI for Predicting Radiation-Induced Hepatic Toxicity After Intensity Modulated Radiotherapy for Hepatocellular Carcinoma: A Machine Learning Predictive Model Based on the SHAP Methodology.

Liu F, Chen L, Wu Q, Li L, Li J, Su T, Li J, Liang S, Qing L

pubmed logopapersJan 1 2025
To develop an interpretable machine learning (ML) model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic data, dosimetric parameters, and clinical data for predicting radiation-induced hepatic toxicity (RIHT) in patients with hepatocellular carcinoma (HCC) following intensity-modulated radiation therapy (IMRT). A retrospective analysis of 150 HCC patients was performed, with a 7:3 ratio used to divide the data into training and validation cohorts. Radiomic features from the original MRI sequences and Delta-radiomic features were extracted. Seven ML models based on radiomics were developed: logistic regression (LR), random forest (RF), support vector machine (SVM), eXtreme Gradient Boosting (XGBoost), adaptive boosting (AdaBoost), decision tree (DT), and artificial neural network (ANN). The predictive performance of the models was evaluated using receiver operating characteristic (ROC) curve analysis and calibration curves. Shapley additive explanations (SHAP) were employed to interpret the contribution of each variable and its risk threshold. Original radiomic features and Delta-radiomic features were extracted from DCE-MRI images and filtered to generate Radiomics-scores and Delta-Radiomics-scores. These were then combined with independent risk factors (Body Mass Index (BMI), V5, and pre-Child-Pugh score(pre-CP)) identified through univariate and multivariate logistic regression and Spearman correlation analysis to construct the ML models. In the training cohort, the AUC values were 0.8651 for LR, 0.7004 for RF, 0.6349 for SVM, 0.6706 for XGBoost, 0.7341 for AdaBoost, 0.6806 for Decision Tree, and 0.6786 for ANN. The corresponding accuracies were 84.4%, 65.6%, 75.0%, 65.6%, 71.9%, 68.8%, and 71.9%, respectively. The validation cohort further confirmed the superiority of the LR model, which was selected as the optimal model. SHAP analysis revealed that Delta-radiomics made a substantial positive contribution to the model. The interpretable ML model based on radiomics provides a non-invasive tool for predicting RIHT in patients with HCC, demonstrating satisfactory discriminative performance.

Auxiliary Diagnosis of Pulmonary Nodules' Benignancy and Malignancy Based on Machine Learning: A Retrospective Study.

Wang W, Yang B, Wu H, Che H, Tong Y, Zhang B, Liu H, Chen Y

pubmed logopapersJan 1 2025
Lung cancer, one of the most lethal malignancies globally, often presents insidiously as pulmonary nodules. Its nonspecific clinical presentation and heterogeneous imaging characteristics hinder accurate differentiation between benign and malignant lesions, while biopsy's invasiveness and procedural constraints underscore the critical need for non-invasive early diagnostic approaches. In this retrospective study, we analyzed outpatient and inpatient records from the First Medical Center of Chinese PLA General Hospital between 2011 and 2021, focusing on pulmonary nodules measuring 5-30mm on CT scans without overt signs of malignancy. Pathological examination served as the reference standard. Comparative experiments evaluated SVM, RF, XGBoost, FNN, and Atten_FNN using five-fold cross-validation to assess AUC, sensitivity, and specificity. The dataset was split 70%/30%, and stratified five-fold cross-validation was applied to the training set. The optimal model was interpreted with SHAP to identify the most influential predictive features. This study enrolled 3355 patients, including 1156 with benign and 2199 with malignant pulmonary nodules. The Atten_FNN model demonstrated superior performance in five-fold cross-validation, achieving an AUC of 0.82, accuracy of 0.75, sensitivity of 0.77, and F1 score of 0.80. SHAP analysis revealed key predictive factors: demographic variables (age, sex, BMI), CT-derived features (maximum nodule diameter, morphology, density, calcification, ground-glass opacity), and laboratory biomarkers (neuroendocrine markers, carcinoembryonic antigen). This study integrates electronic medical records and pathology data to predict pulmonary nodule malignancy using machine/deep learning models. SHAP-based interpretability analysis uncovered key clinical determinants. Acknowledging limitations in cross-center generalizability, we propose the development of a multimodal diagnostic systems that combines CT imaging and radiomics, to be validated in multi-center prospective cohorts to facilitate clinical translation. This framework establishes a novel paradigm for early precision diagnosis of lung cancer.

Same-model and cross-model variability in knee cartilage thickness measurements using 3D MRI systems.

Katano H, Kaneko H, Sasaki E, Hashiguchi N, Nagai K, Ishijima M, Ishibashi Y, Adachi N, Kuroda R, Tomita M, Masumoto J, Sekiya I

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) based three-dimensional analysis of knee cartilage has evolved to become fully automatic. However, when implementing these measurements across multiple clinical centers, scanner variability becomes a critical consideration. Our purposes were to quantify and compare same-model variability (between repeated scans on the same MRI system) and cross-model variability (across different MRI systems) in knee cartilage thickness measurements using MRI scanners from five manufacturers, as analyzed with a specific 3D volume analysis software. Ten healthy volunteers (eight males and two females, aged 22-60 years) underwent two scans of their right knee on 3T MRI systems from five manufacturers (Canon, Fujifilm, GE, Philips, and Siemens). The imaging protocol included fat-suppressed spoiled gradient echo and proton density weighted sequences. Cartilage regions were automatically segmented into 7 subregions using a specific deep learning-based 3D volume analysis software. This resulted in 350 measurements for same-model variability and 2,800 measurements for cross-model variability. For same-model variability, 82% of measurements showed variability ≤0.10 mm, and 98% showed variability ≤0.20 mm. For cross-model variability, 51% showed variability ≤0.10 mm, and 84% showed variability ≤0.20 mm. The mean same-model variability (0.06 ± 0.05 mm) was significantly lower than cross-model variability (0.11 ± 0.09 mm) (p < 0.001). This study demonstrates that knee cartilage thickness measurements exhibit significantly higher variability across different MRI systems compared to repeated measurements on the same system, when analyzed using this specific software. This finding has important implications for multi-center studies and longitudinal assessments using different MRI systems and highlights the software-dependent nature of such variability assessments.

Radiomics machine learning based on asymmetrically prominent cortical and deep medullary veins combined with clinical features to predict prognosis in acute ischemic stroke: a retrospective study.

Li H, Chang C, Zhou B, Lan Y, Zang P, Chen S, Qi S, Ju R, Duan Y

pubmed logopapersJan 1 2025
Acute ischemic stroke (AIS) has a poor prognosis and a high recurrence rate. Predicting the outcomes of AIS patients in the early stages of the disease is therefore important. The establishment of intracerebral collateral circulation significantly improves the survival of brain cells and the outcomes of AIS patients. However, no machine learning method has been applied to investigate the correlation between the dynamic evolution of intracerebral venous collateral circulation and AIS prognosis. Therefore, we employed a support vector machine (SVM) algorithm to analyze asymmetrically prominent cortical veins (APCVs) and deep medullary veins (DMVs) to establish a radiomic model for predicting the prognosis of AIS by combining clinical indicators. The magnetic resonance imaging (MRI) data and clinical indicators of 150 AIS patients were retrospectively analyzed. Regions of interest corresponding to the DMVs and APCVs were delineated, and least absolute shrinkage and selection operator (LASSO) regression was used to select features extracted from these regions. An APCV-DMV radiomic model was created via the SVM algorithm, and independent clinical risk factors associated with AIS were combined with the radiomic model to generate a joint model. The SVM algorithm was selected because of its proven efficacy in handling high-dimensional radiomic data compared with alternative classifiers (<i>e.g.</i>, random forest) in pilot experiments. Nine radiomic features associated with AIS patient outcomes were ultimately selected. In the internal training test set, the AUCs of the clinical, DMV-APCV radiomic and joint models were 0.816, 0.976 and 0.996, respectively. The DeLong test revealed that the predictive performance of the joint model was better than that of the individual models, with a test set AUC of 0.996, sensitivity of 0.905, and specificity of 1.000 (<i>P</i> < 0.05). Using radiomic methods, we propose a novel joint predictive model that combines the imaging histologic features of the APCV and DMV with clinical indicators. This model quantitatively characterizes the morphological and functional attributes of venous collateral circulation, elucidating its important role in accurately evaluating the prognosis of patients with AIS and providing a noninvasive and highly accurate imaging tool for early prognostic prediction.

Metal artifact reduction combined with deep learning image reconstruction algorithm for CT image quality optimization: a phantom study.

Zou H, Wang Z, Guo M, Peng K, Zhou J, Zhou L, Fan B

pubmed logopapersJan 1 2025
Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (<i>p</i> < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (<i>p</i> < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (<i>p</i> = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (<i>p</i> = 0.041). The f<sub>peak</sub> and f<sub>avg</sub> values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.

Volumetric atlas of the rat inner ear from microCT and iDISCO+ cleared temporal bones.

Cossellu D, Vivado E, Batti L, Gantar I, Pizzala R, Perin P

pubmed logopapersJan 1 2025
Volumetric atlases are an invaluable tool in neuroscience and otolaryngology, greatly aiding experiment planning and surgical interventions, as well as the interpretation of experimental and clinical data. The rat is a major animal model for hearing and balance studies, and a detailed volumetric atlas for the rat central auditory system (Waxholm) is available. However, the Waxholm rat atlas only contains a low-resolution inner ear featuring five structures. In the present work, we segmented and annotated 34 structures in the rat inner ear, yielding a detailed volumetric inner ear atlas which can be integrated with the Waxholm rat brain atlas. We performed iodine-enhanced microCT and iDISCO+-based clearing and fluorescence lightsheet microscopy imaging on a sample of rat temporal bones. Image stacks were segmented in a semiautomated way, and 34 inner ear volumes were reconstructed from five samples. Using geometrical morphometry, high-resolution segmentations obtained from lightsheet and microCT stacks were registered into the coordinate system of the Waxholm rat atlas. Cleared sample autofluorescence was used for the reconstruction of most inner ear structures, including fluid-filled compartments, nerves and sensory epithelia, blood vessels, and connective tissue structures. Image resolution allowed reconstruction of thin ducts (reuniting, saccular and endolymphatic), and the utriculoendolymphatic valve. The vestibulocochlear artery coursing through bone was found to be associated to the reuniting duct, and to be visible both in cleared and microCT samples, thus allowing to infer duct location from microCT scans. Cleared labyrinths showed minimal shape distortions, as shown by alignment with microCT and Waxholm labyrinths. However, membranous labyrinths could display variable collapse of the superior division, especially the roof of canal ampullae, whereas the inferior division (saccule and cochlea) was well preserved, with the exception of Reissner's membrane that could display ruptures in the second cochlear turn. As an example of atlas use, the volumes reconstructed from segmentations were used to separate macrophage populations from the spiral ganglion, auditory neuron dendrites, and Organ of Corti. We have reconstructed 34 structures from the rat temporal bone, which are available as both image stacks and printable 3D objects in a shared repository for download. These can be used for teaching, localizing cells or other features within the ear, modeling auditory and vestibular sensory physiology and training of automated segmentation machine learning tools.

RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology.

Liu W, Guo X

pubmed logopapersJan 1 2025
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.
Page 345 of 3463455 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.