Sort by:
Page 33 of 33326 results

OA-HybridCNN (OHC): An advanced deep learning fusion model for enhanced diagnostic accuracy in knee osteoarthritis imaging.

Liao Y, Yang G, Pan W, Lu Y

pubmed logopapersJan 1 2025
Knee osteoarthritis (KOA) is a leading cause of disability globally. Early and accurate diagnosis is paramount in preventing its progression and improving patients' quality of life. However, the inconsistency in radiologists' expertise and the onset of visual fatigue during prolonged image analysis often compromise diagnostic accuracy, highlighting the need for automated diagnostic solutions. In this study, we present an advanced deep learning model, OA-HybridCNN (OHC), which integrates ResNet and DenseNet architectures. This integration effectively addresses the gradient vanishing issue in DenseNet and augments prediction accuracy. To evaluate its performance, we conducted a thorough comparison with other deep learning models using five-fold cross-validation and external tests. The OHC model outperformed its counterparts across all performance metrics. In external testing, OHC exhibited an accuracy of 91.77%, precision of 92.34%, and recall of 91.36%. During the five-fold cross-validation, its average AUC and ACC were 86.34% and 87.42%, respectively. Deep learning, particularly exemplified by the OHC model, has greatly improved the efficiency and accuracy of KOA imaging diagnosis. The adoption of such technologies not only alleviates the burden on radiologists but also significantly enhances diagnostic precision.

AI-Assisted 3D Planning of CT Parameters for Personalized Femoral Prosthesis Selection in Total Hip Arthroplasty.

Yang TJ, Qian W

pubmed logopapersJan 1 2025
To investigate the efficacy of CT measurement parameters combined with AI-assisted 3D planning for personalized femoral prosthesis selection in total hip arthroplasty (THA). A retrospective analysis was conducted on clinical data from 247 patients with unilateral hip or knee joint disorders treated at Renmin Hospital of Hubei University of Medicine between April 2021 and February 2024. All patients underwent preoperative full-pelvis and bilateral full-length femoral CT scans. The raw CT data were imported into Mimics 19.0 software to reconstruct a three-dimensional (3D) model of the healthy femur. Using 3-matic Research 11.0 software, the femoral head rotation center was located, and parameters including femoral head diameter (FHD), femoral neck length (FNL), femoral neck-shaft angle (FNSA), femoral offset (FO), femoral neck anteversion angle (FNAA), tip-apex distance (TAD), and tip-apex angle (TAA) were measured. AI-assisted THA 3D planning system AIJOINT V1.0.0.0 software was used for preoperative planning and design, enabling personalized selection of femoral prostheses with varying neck-shaft angles and surgical simulation. Groups were compared by gender, age, and parameters. ROC curves evaluated prediction efficacy. Females exhibited smaller FHD, FNL, FO, TAD, TAA but larger FNSA/FNAA vs males (P<0.05). Patients >65 years had higher FO, TAD, TAA (P<0.05). TAD-TAA correlation was strong (r=0.954), while FNSA negatively correlated with TAD/TAA (r=-0.773/-0.701). ROC analysis demonstrated high predictive accuracy: TAD (AUC=0.891, sensitivity=91.7%, specificity=87.6%) and TAA (AUC=0.882, sensitivity=100%, specificity=88.8%). CT parameters (TAA, TAD, FNSA, FO) are interrelated and effective predictors for femoral prosthesis selection. Integration with AI-assisted planning optimizes personalized THA, reducing biomechanical mismatch risks.

Same-model and cross-model variability in knee cartilage thickness measurements using 3D MRI systems.

Katano H, Kaneko H, Sasaki E, Hashiguchi N, Nagai K, Ishijima M, Ishibashi Y, Adachi N, Kuroda R, Tomita M, Masumoto J, Sekiya I

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) based three-dimensional analysis of knee cartilage has evolved to become fully automatic. However, when implementing these measurements across multiple clinical centers, scanner variability becomes a critical consideration. Our purposes were to quantify and compare same-model variability (between repeated scans on the same MRI system) and cross-model variability (across different MRI systems) in knee cartilage thickness measurements using MRI scanners from five manufacturers, as analyzed with a specific 3D volume analysis software. Ten healthy volunteers (eight males and two females, aged 22-60 years) underwent two scans of their right knee on 3T MRI systems from five manufacturers (Canon, Fujifilm, GE, Philips, and Siemens). The imaging protocol included fat-suppressed spoiled gradient echo and proton density weighted sequences. Cartilage regions were automatically segmented into 7 subregions using a specific deep learning-based 3D volume analysis software. This resulted in 350 measurements for same-model variability and 2,800 measurements for cross-model variability. For same-model variability, 82% of measurements showed variability ≤0.10 mm, and 98% showed variability ≤0.20 mm. For cross-model variability, 51% showed variability ≤0.10 mm, and 84% showed variability ≤0.20 mm. The mean same-model variability (0.06 ± 0.05 mm) was significantly lower than cross-model variability (0.11 ± 0.09 mm) (p < 0.001). This study demonstrates that knee cartilage thickness measurements exhibit significantly higher variability across different MRI systems compared to repeated measurements on the same system, when analyzed using this specific software. This finding has important implications for multi-center studies and longitudinal assessments using different MRI systems and highlights the software-dependent nature of such variability assessments.

Cervical vertebral body segmentation in X-ray and magnetic resonance imaging based on YOLO-UNet: Automatic segmentation approach and available tool.

Wang H, Lu J, Yang S, Xiao Y, He L, Dou Z, Zhao W, Yang L

pubmed logopapersJan 1 2025
Cervical spine disorders are becoming increasingly common, particularly among sedentary populations. The accurate segmentation of cervical vertebrae is critical for diagnostic and research applications. Traditional segmentation methods are limited in terms of precision and applicability across imaging modalities. The aim of this study is to develop and evaluate a fully automatic segmentation method and a user-friendly tool for detecting cervical vertebral body using a combined neural network model based on the YOLOv11 and U-Net3 + models. A dataset of X-ray and magnetic resonance imaging (MRI) images was collected, enhanced, and annotated to include 2136 X-ray images and 2184 MRI images. The proposed YOLO-UNet ensemble model was trained and compared with four other groups of image extraction models, including YOLOv11, DeepLabV3+, U-Net3 + for direct image segmentation, and the YOLO-DeepLab network. The evaluation metrics included the Dice coefficient, Hausdorff distance, intersection over union, positive predictive value, and sensitivity. The YOLO-UNet model combined the advantages of the YOLO and U-Net models and demonstrated excellent vertebral body segmentation capabilities on both X-ray and MRI datasets, which were closer to the ground truth images. Compared with other models, it achieved greater accuracy and a more accurate depiction of the vertebral body shape, demonstrated better versatility, and exhibited superior performance across all evaluation indicators. The YOLO-UNet network model provided a robust and versatile solution for cervical vertebral body segmentation, demonstrating excellent accuracy and adaptability across imaging modalities on both X-ray and MRI datasets. The accompanying user-friendly tool enhanced usability, making it accessible to both clinical and research users. In this study, the challenge of large-scale medical annotation tasks was addressed, thereby reducing project costs and supporting advancements in medical information technology and clinical research.

Current application, possibilities, and challenges of artificial intelligence in the management of rheumatoid arthritis, axial spondyloarthritis, and psoriatic arthritis.

Bilgin E

pubmed logopapersJan 1 2025
This narrative review outlines the current applications and considerations of artificial intelligence (AI) for diagnosis, management, and prognosis in rheumatoid arthritis (RA), axial spondyloarthritis (axSpA), and psoriatic arthritis (PsA). Advances in AI, mainly in machine learning and deep learning, have significantly influenced medical research and clinical practice over the past decades by offering precisions in data understanding and treatment approaches. AI applications have enhanced risk prediction models, early diagnosis, and better management in RA. Predictive models have guided treatment decisions such as-response to methotrexate and biologics-while wearable devices and electronic health records (EHR) improve disease activity monitoring. In addition, AI applications are reported as promising for the early identification of extra-articular involvements, prediction, detection, and assessment of comorbidities. In axSpA, AI-driven models using imaging techniques such as sacroiliac radiography, magnetic resonance imaging, and computed tomography have increased diagnostic accuracy, especially for early inflammatory changes. Predictive algorithms help stratify and predict disease outcomes, while clinical decision support systems integrate clinical and imaging data for optimized management. For PsA, AI has also allowed for early detection among psoriasis patients using genetic markers, immune profiling, and EHR-based natural language processing systems. Overall, AI models may predict diagnosis, disease severity, treatment response, and comorbidities to improve care in patients with RA, axSpA, and PsA. As a rapidly developing and improving area, AI has the potential to change our current perspective of medical practice by offering better diagnostic evaluation and treatments and improved patient follow-up. Multimodal AI, focusing on collaboration, reliability, transparency, and patient-centered innovation, looks like the future of medical practice. However, data quality, model interpretability, and ethical considerations must be addressed to ensure reliable and equitable applications in clinical practice.

Application of artificial intelligence in X-ray imaging analysis for knee arthroplasty: A systematic review.

Zhang Z, Hui X, Tao H, Fu Z, Cai Z, Zhou S, Yang K

pubmed logopapersJan 1 2025
Artificial intelligence (AI) is a promising and powerful technology with increasing use in orthopedics. The global morbidity of knee arthroplasty is expanding. This study investigated the use of AI algorithms to review radiographs of knee arthroplasty. The Ovid-Embase, Web of Science, Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), WeiPu (VIP), WanFang, and China Biology Medicine (CBM) databases were systematically screened from inception to March 2024 (PROSPERO study protocol registration: CRD42024507549). The quality assessment of the diagnostic accuracy studies tool assessed the risk of bias. A total of 21 studies were included in the analysis. Of these, 10 studies identified and classified implant brands, 6 measured implant size and component alignment, 3 detected implant loosening, and 2 diagnosed prosthetic joint infections (PJI). For classifying and identifying implant brands, 5 studies demonstrated near-perfect prediction with an area under the curve (AUC) ranging from 0.98 to 1.0, and 10 achieved accuracy (ACC) between 96-100%. Regarding implant measurement, one study showed an AUC of 0.62, and two others exhibited over 80% ACC in determining component sizes. Moreover, Artificial intelligence showed good to excellent reliability across all angles in three separate studies (Intraclass Correlation Coefficient > 0.78). In predicting PJI, one study achieved an AUC of 0.91 with a corresponding ACC of 90.5%, while another reported a positive predictive value ranging from 75% to 85%. For detecting implant loosening, the AUC was found to be at least as high as 0.976 with ACC ranging from 85.8% to 97.5%. These studies show that AI is promising in recognizing implants in knee arthroplasty. Future research should follow a rigorous approach to AI development, with comprehensive and transparent reporting of methods and the creation of open-source software programs and commercial tools that can provide clinicians with objective clinical decisions.
Page 33 of 33326 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.