Sort by:
Page 32 of 3503499 results

Decoding fetal motion in 4D ultrasound with DeepLabCut.

Inubashiri E, Kaishi Y, Miyake T, Yamaguchi R, Hamaguchi T, Inubashiri M, Ota H, Watanabe Y, Deguchi K, Kuroki K, Maeda N

pubmed logopapersAug 11 2025
This study aimed to objectively and quantitatively analyze fetal motor behavior using DeepLabCut (DLC), a markerless posture estimation tool based on deep learning, applied to four-dimensional ultrasound (4DUS) data collected during the second trimester. We propose a novel clinical method for precise assessment of fetal neurodevelopment. Fifty 4DUS video recordings of normal singleton fetuses aged 12 to 22 gestational weeks were analyzed. Eight fetal joints were manually labeled in 2% of each video to train a customized DLC model. The model's accuracy was evaluated using likelihood scores. Intra- and inter-rater reliability of manual labeling were assessed using intraclass correlation coefficients (ICC). Angular velocity time series derived from joint coordinates were analyzed to quantify fetal movement patterns and developmental coordination. Manual labeling demonstrated excellent reproducibility (inter-rater ICC = 0.990, intra-rater ICC = 0.961). The trained DLC model achieved a mean likelihood score of 0.960, confirming high tracking accuracy. Kinematic analysis revealed developmental trends: localized rapid limb movements were common at 12-13 weeks; movements became more coordinated and systemic by 18-20 weeks, reflecting advancing neuromuscular maturation. Although a modest increase in tracking accuracy was observed with gestational age, this trend did not reach statistical significance (p < 0.001). DLC enables precise quantitative analysis of fetal motor behavior from 4DUS recordings. This AI-driven approach offers a promising, noninvasive alternative to conventional qualitative assessments, providing detailed insights into early fetal neurodevelopmental trajectories and potential early screening for neurodevelopmental disorders.

Enhanced MRI brain tumor detection using deep learning in conjunction with explainable AI SHAP based diverse and multi feature analysis.

Rahman A, Hayat M, Iqbal N, Alarfaj FK, Alkhalaf S, Alturise F

pubmed logopapersAug 11 2025
Recent innovations in medical imaging have markedly improved brain tumor identification, surpassing conventional diagnostic approaches that suffer from low resolution, radiation exposure, and limited contrast. Magnetic Resonance Imaging (MRI) is pivotal in precise and accurate tumor characterization owing to its high-resolution, non-invasive nature. This study investigates the synergy among multiple feature representation schemes such as local Binary Patterns (LBP), Gabor filters, Discrete Wavelet Transform, Fast Fourier Transform, Convolutional Neural Networks (CNN), and Gray-Level Run Length Matrix alongside five learning algorithms namely: k-nearest Neighbor, Random Forest, Support Vector Classifier (SVC), and probabilistic neural network (PNN), and CNN. Empirical findings indicate that LBP in conjunction with SVC and CNN obtained high specificity and accuracy, rendering it a promising method for MRI-based tumor diagnosis. Further to investigate the contribution of LBP, Statistical analysis chi-square and p-value tests are used to confirm the significant impact of LBP feature space for identification of brain Tumor. In addition, The SHAP analysis was used to identify the most important features in classification. In a small dataset, CNN obtained 97.8% accuracy while SVC yielded 98.06% accuracy. In subsequent analysis, a large benchmark dataset is also utilized to evaluate the performance of learning algorithms in order to investigate the generalization power of the proposed model. CNN achieves the highest accuracy of 98.9%, followed by SVC at 96.7%. These results highlight CNN's effectiveness in automated, high-precision tumor diagnosis. This achievement is ascribed with MRI-based feature extraction by combining high resolution, non-invasive imaging capabilities with the powerful analytical abilities of CNN. CNN demonstrates superiority in medical imaging owing to its ability to learn intricate spatial patterns and generalize effectively. This interaction enhances the accuracy, speed, and consistency of brain tumor detection, ultimately leading to better patient outcomes and more efficient healthcare delivery. https://github.com/asifrahman557/BrainTumorDetection .

Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Sun Q, Yu L, Song Z, Wang C, Li W, Chen W, Xu J, Han S

pubmed logopapersAug 11 2025
Microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) require distinct treatment strategies and are associated with different prognoses, underscoring the importance of accurate differentiation. This study aims to develop a predictive model that combines radiomics and deep learning to effectively distinguish between MIA and IAC. In this retrospective study, 252 pathologically confirmed cases of ground-glass nodules (GGNs) were included, with 177 allocated to the training set and 75 to the testing set. Radiomics, 2D deep learning, and 3D deep learning models were constructed based on CT images. In addition, two fusion strategies were employed to integrate these modalities: early fusion, which concatenates features from all modalities prior to classification, and late fusion, which ensembles the output probabilities of the individual models. The predictive performance of all five models was evaluated using the area under the receiver operating characteristic curve (AUC), and DeLong's test was performed to compare differences in AUC between models. The radiomics model achieved an AUC of 0.794 (95% CI: 0.684-0.898), while the 2D and 3D deep learning models achieved AUCs of 0.754 (95% CI: 0.594-0.882) and 0.847 (95% CI: 0.724-0.945), respectively, in the testing set. Among the fusion models, the late fusion strategy demonstrated the highest predictive performance, with an AUC of 0.898 (95% CI: 0.784-0.962), outperforming the early fusion model, which achieved an AUC of 0.857 (95% CI: 0.731-0.936). Although the differences were not statistically significant, the late fusion model yielded the highest numerical values for diagnostic accuracy, sensitivity, and specificity across all models. The fusion of radiomics and deep learning features shows potential in improving the differentiation of MIA and IAC in GGNs. The late fusion strategy demonstrated promising results, warranting further validation in larger, multicenter studies.

MedReasoner: Reinforcement Learning Drives Reasoning Grounding from Clinical Thought to Pixel-Level Precision

Zhonghao Yan, Muxi Diao, Yuxuan Yang, Jiayuan Xu, Kaizhou Zhang, Ruoyan Jing, Lele Yang, Yanxi Liu, Kongming Liang, Zhanyu Ma

arxiv logopreprintAug 11 2025
Accurately grounding regions of interest (ROIs) is critical for diagnosis and treatment planning in medical imaging. While multimodal large language models (MLLMs) combine visual perception with natural language, current medical-grounding pipelines still rely on supervised fine-tuning with explicit spatial hints, making them ill-equipped to handle the implicit queries common in clinical practice. This work makes three core contributions. We first define Unified Medical Reasoning Grounding (UMRG), a novel vision-language task that demands clinical reasoning and pixel-level grounding. Second, we release U-MRG-14K, a dataset of 14K samples featuring pixel-level masks alongside implicit clinical queries and reasoning traces, spanning 10 modalities, 15 super-categories, and 108 specific categories. Finally, we introduce MedReasoner, a modular framework that distinctly separates reasoning from segmentation: an MLLM reasoner is optimized with reinforcement learning, while a frozen segmentation expert converts spatial prompts into masks, with alignment achieved through format and accuracy rewards. MedReasoner achieves state-of-the-art performance on U-MRG-14K and demonstrates strong generalization to unseen clinical queries, underscoring the significant promise of reinforcement learning for interpretable medical grounding.

PrIINeR: Towards Prior-Informed Implicit Neural Representations for Accelerated MRI

Ziad Al-Haj Hemidi, Eytan Kats, Mattias P. Heinrich

arxiv logopreprintAug 11 2025
Accelerating Magnetic Resonance Imaging (MRI) reduces scan time but often degrades image quality. While Implicit Neural Representations (INRs) show promise for MRI reconstruction, they struggle at high acceleration factors due to weak prior constraints, leading to structural loss and aliasing artefacts. To address this, we propose PrIINeR, an INR-based MRI reconstruction method that integrates prior knowledge from pre-trained deep learning models into the INR framework. By combining population-level knowledge with instance-based optimization and enforcing dual data consistency, PrIINeR aligns both with the acquired k-space data and the prior-informed reconstruction. Evaluated on the NYU fastMRI dataset, our method not only outperforms state-of-the-art INR-based approaches but also improves upon several learning-based state-of-the-art methods, significantly improving structural preservation and fidelity while effectively removing aliasing artefacts.PrIINeR bridges deep learning and INR-based techniques, offering a more reliable solution for high-quality, accelerated MRI reconstruction. The code is publicly available on https://github.com/multimodallearning/PrIINeR.

A Physics-Driven Neural Network with Parameter Embedding for Generating Quantitative MR Maps from Weighted Images

Lingjing Chen, Chengxiu Zhang, Yinqiao Yi, Yida Wang, Yang Song, Xu Yan, Shengfang Xu, Dalin Zhu, Mengqiu Cao, Yan Zhou, Chenglong Wang, Guang Yang

arxiv logopreprintAug 11 2025
We propose a deep learning-based approach that integrates MRI sequence parameters to improve the accuracy and generalizability of quantitative image synthesis from clinical weighted MRI. Our physics-driven neural network embeds MRI sequence parameters -- repetition time (TR), echo time (TE), and inversion time (TI) -- directly into the model via parameter embedding, enabling the network to learn the underlying physical principles of MRI signal formation. The model takes conventional T1-weighted, T2-weighted, and T2-FLAIR images as input and synthesizes T1, T2, and proton density (PD) quantitative maps. Trained on healthy brain MR images, it was evaluated on both internal and external test datasets. The proposed method achieved high performance with PSNR values exceeding 34 dB and SSIM values above 0.92 for all synthesized parameter maps. It outperformed conventional deep learning models in accuracy and robustness, including data with previously unseen brain structures and lesions. Notably, our model accurately synthesized quantitative maps for these unseen pathological regions, highlighting its superior generalization capability. Incorporating MRI sequence parameters via parameter embedding allows the neural network to better learn the physical characteristics of MR signals, significantly enhancing the performance and reliability of quantitative MRI synthesis. This method shows great potential for accelerating qMRI and improving its clinical utility.

Diffusing the Blind Spot: Uterine MRI Synthesis with Diffusion Models

Johanna P. Müller, Anika Knupfer, Pedro Blöss, Edoardo Berardi Vittur, Bernhard Kainz, Jana Hutter

arxiv logopreprintAug 11 2025
Despite significant progress in generative modelling, existing diffusion models often struggle to produce anatomically precise female pelvic images, limiting their application in gynaecological imaging, where data scarcity and patient privacy concerns are critical. To overcome these barriers, we introduce a novel diffusion-based framework for uterine MRI synthesis, integrating both unconditional and conditioned Denoising Diffusion Probabilistic Models (DDPMs) and Latent Diffusion Models (LDMs) in 2D and 3D. Our approach generates anatomically coherent, high fidelity synthetic images that closely mimic real scans and provide valuable resources for training robust diagnostic models. We evaluate generative quality using advanced perceptual and distributional metrics, benchmarking against standard reconstruction methods, and demonstrate substantial gains in diagnostic accuracy on a key classification task. A blinded expert evaluation further validates the clinical realism of our synthetic images. We release our models with privacy safeguards and a comprehensive synthetic uterine MRI dataset to support reproducible research and advance equitable AI in gynaecology.

MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer

Tao Tang, Chengxu Yang

arxiv logopreprintAug 11 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.

Enhancing Reliability of Medical Image Diagnosis through Top-rank Learning with Rejection Module

Xiaotong Ji, Ryoma Bise, Seiichi Uchida

arxiv logopreprintAug 11 2025
In medical image processing, accurate diagnosis is of paramount importance. Leveraging machine learning techniques, particularly top-rank learning, shows significant promise by focusing on the most crucial instances. However, challenges arise from noisy labels and class-ambiguous instances, which can severely hinder the top-rank objective, as they may be erroneously placed among the top-ranked instances. To address these, we propose a novel approach that enhances toprank learning by integrating a rejection module. Cooptimized with the top-rank loss, this module identifies and mitigates the impact of outliers that hinder training effectiveness. The rejection module functions as an additional branch, assessing instances based on a rejection function that measures their deviation from the norm. Through experimental validation on a medical dataset, our methodology demonstrates its efficacy in detecting and mitigating outliers, improving the reliability and accuracy of medical image diagnoses.

Deep Learning-Based Desikan-Killiany Parcellation of the Brain Using Diffusion MRI

Yousef Sadegheih, Dorit Merhof

arxiv logopreprintAug 11 2025
Accurate brain parcellation in diffusion MRI (dMRI) space is essential for advanced neuroimaging analyses. However, most existing approaches rely on anatomical MRI for segmentation and inter-modality registration, a process that can introduce errors and limit the versatility of the technique. In this study, we present a novel deep learning-based framework for direct parcellation based on the Desikan-Killiany (DK) atlas using only diffusion MRI data. Our method utilizes a hierarchical, two-stage segmentation network: the first stage performs coarse parcellation into broad brain regions, and the second stage refines the segmentation to delineate more detailed subregions within each coarse category. We conduct an extensive ablation study to evaluate various diffusion-derived parameter maps, identifying an optimal combination of fractional anisotropy, trace, sphericity, and maximum eigenvalue that enhances parellation accuracy. When evaluated on the Human Connectome Project and Consortium for Neuropsychiatric Phenomics datasets, our approach achieves superior Dice Similarity Coefficients compared to existing state-of-the-art models. Additionally, our method demonstrates robust generalization across different image resolutions and acquisition protocols, producing more homogeneous parcellations as measured by the relative standard deviation within regions. This work represents a significant advancement in dMRI-based brain segmentation, providing a precise, reliable, and registration-free solution that is critical for improved structural connectivity and microstructural analyses in both research and clinical applications. The implementation of our method is publicly available on github.com/xmindflow/DKParcellationdMRI.
Page 32 of 3503499 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.