Sort by:
Page 32 of 60594 results

LUMEN-A Deep Learning Pipeline for Analysis of the 3D Morphology of the Cerebral Lenticulostriate Arteries from Time-of-Flight 7T MRI.

Li R, Chatterjee S, Jiaerken Y, Zhou X, Radhakrishna C, Benjamin P, Nannoni S, Tozer DJ, Markus HS, Rodgers CT

pubmed logopapersJul 15 2025
The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5±8.5 LSA branches. Branch length inside the basal ganglia was 26.4±3.5 mm, and tortuosity was 1.5±0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.

Non-invasive liver fibrosis screening on CT images using radiomics.

Yoo JJ, Namdar K, Carey S, Fischer SE, McIntosh C, Khalvati F, Rogalla P

pubmed logopapersJul 15 2025
To develop a radiomics machine learning model for detecting liver fibrosis on CT images of the liver. With Ethics Board approval, 169 patients (68 women, 101 men; mean age, 51.2 years ± 14.7 [SD]) underwent an ultrasound-guided liver biopsy with simultaneous CT acquisitions without and following intravenous contrast material administration. Radiomic features were extracted from two regions of interest (ROIs) on the CT images, one placed at the biopsy site and another distant from the biopsy site. A development cohort, which was split further into training and validation cohorts across 100 trials, was used to determine the optimal combinations of contrast, normalization, machine learning model, and radiomic features for liver fibrosis detection based on their Area Under the Receiver Operating Characteristic curve (AUC) on the validation cohort. The optimal combinations were then used to develop one final liver fibrosis model which was evaluated on a test cohort. When averaging the AUC across all combinations, non-contrast enhanced (NC) CT (AUC, 0.6100; 95% CI: 0.5897, 0.6303) outperformed contrast-enhanced CT (AUC, 0.5680; 95% CI: 0.5471, 0.5890). The most effective model was found to be a logistic regression model with input features of maximum, energy, kurtosis, skewness, and small area high gray level emphasis extracted from non-contrast enhanced NC CT normalized using Gamma correction with γ = 1.5 (AUC, 0.7833; 95% CI: 0.7821, 0.7845). The presented radiomics-based logistic regression model holds promise as a non-invasive detection tool for subclinical, asymptomatic liver fibrosis. The model may serve as an opportunistic liver fibrosis screening tool when operated in the background during routine CT examinations covering liver parenchyma. The final liver fibrosis detection model is made publicly available at: https://github.com/IMICSLab/RadiomicsLiverFibrosisDetection .

Region Uncertainty Estimation for Medical Image Segmentation with Noisy Labels.

Han K, Wang S, Chen J, Qian C, Lyu C, Ma S, Qiu C, Sheng VS, Huang Q, Liu Z

pubmed logopapersJul 14 2025
The success of deep learning in 3D medical image segmentation hinges on training with a large dataset of fully annotated 3D volumes, which are difficult and time-consuming to acquire. Although recent foundation models (e.g., segment anything model, SAM) can utilize sparse annotations to reduce annotation costs, segmentation tasks involving organs and tissues with blurred boundaries remain challenging. To address this issue, we propose a region uncertainty estimation framework for Computed Tomography (CT) image segmentation using noisy labels. Specifically, we propose a sample-stratified training strategy that stratifies samples according to their varying quality labels, prioritizing confident and fine-grained information at each training stage. This sample-to-voxel level processing enables more reliable supervision information to propagate to noisy label data, thus effectively mitigating the impact of noisy annotations. Moreover, we further design a boundary-guided regional uncertainty estimation module that adapts sample hierarchical training to assist in evaluating sample confidence. Experiments conducted across multiple CT datasets demonstrate the superiority of our proposed method over several competitive approaches under various noise conditions. Our proposed reliable label propagation strategy not only significantly reduces the cost of medical image annotation and robust model training but also improves the segmentation performance in scenarios with imperfect annotations, thus paving the way towards the application of medical segmentation foundation models under low-resource and remote scenarios. Code will be available at https://github.com/KHan-UJS/NoisyLabel.

A Clinically-Informed Framework for Evaluating Vision-Language Models in Radiology Report Generation: Taxonomy of Errors and Risk-Aware Metric

Guan, H., Hou, P. C., Hong, P., Wang, L., Zhang, W., Du, X., Zhou, Z., Zhou, L.

medrxiv logopreprintJul 14 2025
Recent advances in vision-language models (VLMs) have enabled automatic radiology report generation, yet current evaluation methods remain limited to general-purpose NLP metrics or coarse classification-based clinical scores. In this study, we propose a clinically informed evaluation framework for VLM-generated radiology reports that goes beyond traditional performance measures. We define a taxonomy of 12 radiology-specific error types, each annotated with clinical risk levels (low, medium, high) in collaboration with physicians. Using this framework, we conduct a comprehensive error analysis of three representative VLMs, i.e., DeepSeek VL2, CXR-LLaVA, and CheXagent, on 685 gold-standard, expert-annotated MIMIC-CXR cases. We further introduce a risk-aware evaluation metric, the Clinical Risk-weighted Error Score for Text-generation (CREST), to quantify safety impact. Our findings reveal critical model vulnerabilities, common error patterns, and condition-specific risk profiles, offering actionable insights for model development and deployment. This work establishes a safety-centric foundation for evaluating and improving medical report generation models. The source code of our evaluation framework, including CREST computation and error taxonomy analysis, is available at https://github.com/guanharry/VLM-CREST.

X-ray2CTPA: leveraging diffusion models to enhance pulmonary embolism classification.

Cahan N, Klang E, Aviram G, Barash Y, Konen E, Giryes R, Greenspan H

pubmed logopapersJul 14 2025
Chest X-rays or chest radiography (CXR), commonly used for medical diagnostics, typically enables limited imaging compared to computed tomography (CT) scans, which offer more detailed and accurate three-dimensional data, particularly contrast-enhanced scans like CT Pulmonary Angiography (CTPA). However, CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs. In this work, we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolution CTPA scan. Driven by recent advances in generative AI, we introduce a novel diffusion-based approach to this task. We employ the synthesized 3D images in a classification framework and show improved AUC in a Pulmonary Embolism (PE) categorization task, using the initial CXR input. Furthermore, we evaluate the model's performance using quantitative metrics, ensuring diagnostic relevance of the generated images. The proposed method is generalizable and capable of performing additional cross-modality translations in medical imaging. It may pave the way for more accessible and cost-effective advanced diagnostic tools. The code for this project is available: https://github.com/NoaCahan/X-ray2CTPA .

Automated multiclass segmentation of liver vessel structures in CT images using deep learning approaches: a liver surgery pre-planning tool.

Sarkar S, Rahmani M, Farnia P, Ahmadian A, Mozayani N

pubmed logopapersJul 14 2025
Accurate liver vessel segmentation is essential for effective liver surgery pre-planning, and reducing surgical risks since it enables the precise localization and extensive assessment of complex vessel structures. Manual liver vessel segmentation is a time-intensive process reliant on operator expertise and skill. The complex, tree-like architecture of hepatic and portal veins, which are interwoven and anatomically variable, further complicates this challenge. This study addresses these challenges by proposing the UNETR (U-Net Transformers) architecture for the multi-class segmentation of portal and hepatic veins in liver CT images. UNETR leverages a transformer-based encoder to effectively capture long-range dependencies, overcoming the limitations of convolutional neural networks (CNNs) in handling complex anatomical structures. The proposed method was evaluated on contrast-enhanced CT images from the IRCAD as well as a locally dataset developed from a hospital. On the local dataset, the UNETR model achieved Dice coefficients of 49.71% for portal veins, 69.39% for hepatic veins, and 76.74% for overall vessel segmentation, while reaching Dice coefficients of 62.54% for vessel segmentation on the IRCAD dataset. These results highlight the method's effectiveness in identifying complex vessel structures across diverse datasets. These findings underscore the critical role of advanced architectures and precise annotations in improving segmentation accuracy. This work provides a foundation for future advancements in automated liver surgery pre-planning, with the potential to enhance clinical outcomes significantly. The implementation code is available on GitHub: https://github.com/saharsarkar/Multiclass-Vessel-Segmentation .

AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)

Abdul Manaf, Nimra Mughal

arxiv logopreprintJul 13 2025
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification

Calibrated and Robust Foundation Models for Vision-Language and Medical Image Tasks Under Distribution Shift

Behraj Khan, Tahir Syed

arxiv logopreprintJul 12 2025
Foundation models like CLIP and SAM have transformed computer vision and medical imaging via low-shot transfer learning. However, deployment of these models hindered by two key challenges: \textit{distribution shift} between training and test data, and \textit{confidence misalignment} that leads to overconfident incorrect predictions. These issues manifest differently in vision-language classification and medical segmentation tasks, yet existing solutions remain domain-specific. We propose \textit{StaRFM}, a unified framework addressing both challenges. It introduces a Fisher information penalty (FIP), extended to 3D medical data via patch-wise regularization, to reduce covariate shift in CLIP and SAM embeddings. Additionally, a confidence misalignment penalty (CMP), reformulated for voxel-level predictions, calibrates uncertainty in segmentation tasks. We theoretically derive PAC-Bayes bounds showing FIP controls generalization via the Fisher-Rao norm, while CMP minimizes calibration error through Brier score optimization. StaRFM shows consistent performance like \texttt{+}3.5\% accuracy and 28\% lower ECE on 19 vision datasets (e.g., ImageNet, Office-Home), 84.7\% DSC and 4.8mm HD95 in medical segmentation (e.g., BraTS, ATLAS), and 40\% lower cross-domain performance gap compared to prior benchmarking methods. The framework is plug-and-play, requiring minimal architectural changes for seamless integration with foundation models. Code and models will be released at https://anonymous.4open.science/r/StaRFM-C0CD/README.md

Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models

Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel

arxiv logopreprintJul 12 2025
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

Semi-supervised Medical Image Segmentation Using Heterogeneous Complementary Correction Network and Confidence Contrastive Learning.

Li L, Xue M, Li S, Dong Z, Liao T, Li P

pubmed logopapersJul 11 2025
Semi-supervised medical image segmentation techniques have demonstrated significant potential and effectiveness in clinical diagnosis. The prevailing approaches using the mean-teacher (MT) framework achieve promising image segmentation results. However, due to the unreliability of the pseudo labels generated by the teacher model, existing methods still have some inherent limitations that must be considered and addressed. In this paper, we propose an innovative semi-supervised method for medical image segmentation by combining the heterogeneous complementary correction network and confidence contrastive learning (HC-CCL). Specifically, we develop a triple-branch framework by integrating a heterogeneous complementary correction (HCC) network into the MT framework. HCC serves as an auxiliary branch that corrects prediction errors in the student model and provides complementary information. To improve the capacity for feature learning in our proposed model, we introduce a confidence contrastive learning (CCL) approach with a novel sampling strategy. Furthermore, we develop a momentum style transfer (MST) method to narrow the gap between labeled and unlabeled data distributions. In addition, we introduce a Cutout-style augmentation for unsupervised learning to enhance performance. Three medical image datasets (including left atrial (LA) dataset, NIH pancreas dataset, Brats-2019 dataset) were employed to rigorously evaluate HC-CCL. Quantitative results demonstrate significant performance advantages over existing approaches, achieving state-of-the-art performance across all metrics. The implementation will be released at https://github.com/xxmmss/HC-CCL .
Page 32 of 60594 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.