Sort by:
Page 32 of 38373 results

Phantom-Based Ultrasound-ECG Deep Learning Framework for Prospective Cardiac Computed Tomography.

Ganesh S, Lindsey BD, Tridandapani S, Bhatti PT

pubmed logopapersMay 30 2025
We present the first multimodal deep learning framework combining ultrasound (US) and electrocardiography (ECG) data to predict cardiac quiescent periods (QPs) for optimized computed tomography angiography gating (CTA). The framework integrates a 3D convolutional neural network (CNN) for US data and an artificial neural network (ANN) for ECG data. A dynamic heart motion phantom, replicating diverse cardiac conditions, including arrhythmias, was used to validate the framework. Performance was assessed across varying QP lengths, cardiac segments, and motions to simulate real-world conditions. The multimodal US-ECG 3D CNN-ANN framework demonstrated improved QP prediction accuracy compared to single-modality ECG-only gating, achieving 96.87% accuracy compared to 85.56%, including scenarios involving arrhythmic conditions. Notably, the framework shows higher accuracy for longer QP durations (100 ms - 200 ms) compared to shorter durations (<100ms), while still outperforming single-modality methods, which often fail to detect shorter quiescent phases, especially in arrhythmic cases. Consistently outperforming single-modality approaches, it achieves reliable QP prediction across cardiac regions, including the whole phantom, interventricular septum, and cardiac wall regions. Analysis of QP prediction accuracy across cardiac segments demonstrated an average accuracy of 92% in clinically relevant echocardiographic views, highlighting the framework's robustness. Combining US and ECG data using a multimodal framework improves QP prediction accuracy under variable cardiac motion, particularly in arrhythmic conditions. Since even small errors in cardiac CTA can result in non-diagnostic scans, the potential benefits of multimodal gating may improve diagnostic scan rates in patients with high and variable heart rates and arrhythmias.

Parameter-Free Bio-Inspired Channel Attention for Enhanced Cardiac MRI Reconstruction

Anam Hashmi, Julia Dietlmeier, Kathleen M. Curran, Noel E. O'Connor

arxiv logopreprintMay 29 2025
Attention is a fundamental component of the human visual recognition system. The inclusion of attention in a convolutional neural network amplifies relevant visual features and suppresses the less important ones. Integrating attention mechanisms into convolutional neural networks enhances model performance and interpretability. Spatial and channel attention mechanisms have shown significant advantages across many downstream tasks in medical imaging. While existing attention modules have proven to be effective, their design often lacks a robust theoretical underpinning. In this study, we address this gap by proposing a non-linear attention architecture for cardiac MRI reconstruction and hypothesize that insights from ecological principles can guide the development of effective and efficient attention mechanisms. Specifically, we investigate a non-linear ecological difference equation that describes single-species population growth to devise a parameter-free attention module surpassing current state-of-the-art parameter-free methods.

Free-running isotropic three-dimensional cine magnetic resonance imaging with deep learning image reconstruction.

Erdem S, Erdem O, Stebbings S, Greil G, Hussain T, Zou Q

pubmed logopapersMay 29 2025
Cardiovascular magnetic resonance (CMR) cine imaging is the gold standard for assessing ventricular volumes and function. It typically requires two-dimensional (2D) bSSFP sequences and multiple breath-holds, which can be challenging for patients with limited breath-holding capacity. Three-dimensional (3D) cardiovascular magnetic resonance angiography (MRA) usually suffers from lengthy acquisition. Free-running 3D cine imaging with deep learning (DL) reconstruction offers a potential solution by acquiring both cine and angiography simultaneously. To evaluate the efficiency and accuracy of a ferumoxytol-enhanced 3D cine imaging MR sequence combined with DL reconstruction and Heart-NAV technology in patients with congenital heart disease. This Institutional Review Board approved this prospective study that compared (i) functional and volumetric measurements between 3 and 2D cine images; (ii) contrast-to-noise ratio (CNR) between deep-learning (DL) and compressed sensing (CS)-reconstructed 3D cine images; and (iii) cross-sectional area (CSA) measurements between DL-reconstructed 3D cine images and the clinical 3D MRA images acquired using the bSSFP sequence. Paired t-tests were used to compare group measurements, and Bland-Altman analysis assessed agreement in CSA and volumetric data. Sixteen patients (seven males; median age 6 years) were recruited. 3D cine imaging showed slightly larger right ventricular (RV) volumes and lower RV ejection fraction (EF) compared to 2D cine, with a significant difference only in RV end-systolic volume (P = 0.02). Left ventricular (LV) volumes and EF were slightly higher, and LV mass was lower, without significant differences (P ≥ 0.05). DL-reconstructed 3D cine images showed significantly higher CNR in all pulmonary veins than CS-reconstructed 3D cine images (all P < 0.05). Highly accelerated free-running 3D cine imaging with DL reconstruction shortens acquisition times and provides comparable volumetric measurements to 2D cine, and comparable CSA to clinical 3D MRA.

Self-supervised feature learning for cardiac Cine MR image reconstruction

Siying Xu, Marcel Früh, Kerstin Hammernik, Andreas Lingg, Jens Kübler, Patrick Krumm, Daniel Rueckert, Sergios Gatidis, Thomas Küstner

arxiv logopreprintMay 29 2025
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to $16\times$ retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.

Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI.

Wang Z, Xiao M, Zhou Y, Wang C, Wu N, Li Y, Gong Y, Chang S, Chen Y, Zhu L, Zhou J, Cai C, Wang H, Jiang X, Guo D, Yang G, Qu X

pubmed logopapersMay 28 2025
Dynamic magnetic resonance imaging (MRI) plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled but the image reconstruction poses a great challenge of high-dimensional processing. This challenge necessitates extensive training data in deep learning reconstruction methods. In this work, we propose a novel and efficient approach, leveraging a dimension-reduced separable learning scheme that can perform exceptionally well even with highly limited training data. We design this new approach by incorporating spatiotemporal priors into the development of a Deep Separable Spatiotemporal Learning network (DeepSSL), which unrolls an iteration process of a 2D spatiotemporal reconstruction model with both temporal lowrankness and spatial sparsity. Intermediate outputs can also be visualized to provide insights into the network behavior and enhance interpretability. Extensive results on cardiac cine datasets demonstrate that the proposed DeepSSL surpasses stateof-the-art methods both visually and quantitatively, while reducing the demand for training cases by up to 75%. Additionally, its preliminary adaptability to unseen cardiac patients has been verified through a blind reader study conducted by experienced radiologists and cardiologists. Furthermore, DeepSSL enhances the accuracy of the downstream task of cardiac segmentation and exhibits robustness in prospectively undersampled real-time cardiac MRI. DeepSSL is efficient under highly limited training data and adaptive to patients and prospective undersampling. This approach holds promise in addressing the escalating demand for high-dimensional data reconstruction in MRI applications.

High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models

Tristan S. W. Stevens, Oisín Nolan, Oudom Somphone, Jean-Luc Robert, Ruud J. G. van Sloun

arxiv logopreprintMay 28 2025
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces the reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain the focusing in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.

Deep Learning-Based Fully Automated Aortic Valve Leaflets and Root Measurement From Computed Tomography Images - A Feasibility Study.

Yamauchi H, Aoyama G, Tsukihara H, Ino K, Tomii N, Takagi S, Fujimoto K, Sakaguchi T, Sakuma I, Ono M

pubmed logopapersMay 28 2025
The aim of this study was to retrain our existing deep learning-based fully automated aortic valve leaflets/root measurement algorithm, using computed tomography (CT) data for root dilatation (RD), and assess its clinical feasibility. 67 ECG-gated cardiac CT scans were retrospectively collected from 40 patients with RD to retrain the algorithm. An additional 100 patients' CT data with aortic stenosis (AS, n=50) and aortic regurgitation (AR) with/without RD (n=50) were collected to evaluate the algorithm. 45 AR patients had RD. The algorithm provided patient-specific 3-dimensional aortic valve/root visualization. The measurements of 100 cases automatically obtained by the algorithm were compared with an expert's manual measurements. Overall, there was a moderate-to-high correlation, with differences of 6.1-13.4 mm<sup>2</sup>for the virtual basal ring area, 1.1-2.6 mm for sinus diameter, 0.1-0.6 mm for coronary artery height, 0.2-0.5 mm for geometric height, and 0.9 mm for effective height, except for the sinotubular junction of the AR cases (10.3 mm) with an indefinite borderline over the dilated sinuses, compared with 2.1 mm in AS cases. The measurement time (122 s) per case by the algorithm was significantly shorter than those of the experts (618-1,126 s). This fully automated algorithm can assist in evaluating aortic valve/root anatomy for planning surgical and transcatheter treatments while saving time and minimizing workload.

A Left Atrial Positioning System to Enable Follow-Up and Cohort Studies.

Mehringer NJ, McVeigh ER

pubmed logopapersMay 27 2025
We present a new algorithm to automatically convert 3-dimensional left atrium surface meshes into a standard 2-dimensional space: a Left Atrial Positioning System (LAPS). Forty-five contrast-enhanced 4- dimensional computed tomography datasets were collected from 30 subjects. The left atrium volume was segmented using a trained neural network and converted into a surface mesh. LAPS coordinates were calculated on each mesh by computing lines of longitude and latitude on the surface of the mesh with reference to the center of the posterior wall and the mitral valve. LAPS accuracy was evaluated with one-way transfer of coordinates from a template mesh to a synthetic ground truth, which was created by registering the template mesh and pre-calculated LAPS coordinates to a target mesh. The Euclidian distance error was measured between each test node and its ground truth location. The median point transfer error was 2.13 mm between follow-up scans of the same subject (n = 15) and 3.99 mm between different subjects (n = 30). The left atrium was divided into 24 anatomic regions and represented on a 2D square diagram. The Left Atrial Positioning System is fully automatic, accurate, robust to anatomic variation, and has flexible visualization for mapping data in the left atrium. This provides a framework for comparing regional LA surface data values in both follow-up and cohort studies.

Segmentation of the Left Ventricle and Its Pathologies for Acute Myocardial Infarction After Reperfusion in LGE-CMR Images.

Li S, Wu C, Feng C, Bian Z, Dai Y, Wu LM

pubmed logopapersMay 26 2025
Due to the association with higher incidence of left ventricular dysfunction and complications, segmentation of left ventricle and related pathological tissues: microvascular obstruction and myocardial infarction from late gadolinium enhancement cardiac magnetic resonance images is crucially important. However, lack of datasets, diverse shapes and locations, extreme imbalanced class, severe intensity distribution overlapping are the main challenges. We first release a late gadolinium enhancement cardiac magnetic resonance benchmark dataset LGE-LVP containing 140 patients with left ventricle myocardial infarction and concomitant microvascular obstruction. Then, a progressive deep learning model LVPSegNet is proposed to segment the left ventricle and its pathologies via adaptive region of interest extraction, sample augmentation, curriculum learning, and multiple receptive field fusion in dealing with the challenges. Comprehensive comparisons with state-of-the-art models on the internal and external datasets demonstrate that the proposed model performs the best on both geometric and clinical metrics and it most closely matched the clinician's performance. Overall, the released LGE-LVP dataset alongside the LVPSegNet we proposed offer a practical solution for automated left ventricular and its pathologies segmentation by providing data support and facilitating effective segmentation. The dataset and source codes will be released via https://github.com/DFLAG-NEU/LVPSegNet.

Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.

Yin Y, Jia S, Zheng J, Wang W, Wang Z, Lin J, Lin W, Feng C, Xia S, Ge W

pubmed logopapersMay 26 2025
Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables. In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed. The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups. LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.
Page 32 of 38373 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.