Sort by:
Page 32 of 41408 results

[Clinical value of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers].

Fang MJ, Dong D, Tian J

pubmed logopapersMay 25 2025
Peritoneal metastasis is a key factor in the poor prognosis of advanced gastrointestinal cancer patients. Traditional radiological diagnostic faces challenges such as insufficient sensitivity. Through technologies like radiomics and deep learning, artificial intelligence can deeply analyze the tumor heterogeneity and microenvironment features in medical images, revealing markers of peritoneal metastasis and constructing high-precision predictive models. These technologies have demonstrated advantages in tasks such as predicting peritoneal metastasis, assessing the risk of peritoneal recurrence, and identifying small metastatic foci during surgery. This paper summarizes the representative progress and application prospects of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis, and discusses potential development directions such as multimodal data fusion and large model. The integration of medical imaging artificial intelligence with clinical practice is expected to advance personalized and precision medicine in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers.

A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Lei Y, Chao M, Yang K, Gupta V, Yoshida EJ, Wang T, Yang X, Liu T

pubmed logopapersMay 25 2025
High-dose-rate brachytherapy (HDR-BT) is an integral part of treatment for locally advanced cervical cancer, requiring accurate segmentation of the high-risk clinical target volume (HR-CTV) and organs at risk (OARs) on post-applicator CT (pCT) for precise and safe dose delivery. Manual contouring, however, is time-consuming and highly variable, with challenges heightened in cervical HDR-BT due to complex anatomy and low tissue contrast. An effective auto-contouring solution could significantly enhance efficiency, consistency, and accuracy in cervical HDR-BT planning. To develop a machine learning-based approach that improves the accuracy and efficiency of HR-CTV and OAR segmentation on pCT images for cervical HDR-BT. The proposed method employs two sequential deep learning models to segment target and OARs from planning CT data. The intuitive model, a U-Net, initially segments simpler structures such as the bladder and HR-CTV, utilizing shallow features and iodine contrast agents. Building on this, the sophisticated model targets complex structures like the sigmoid, rectum, and bowel, addressing challenges from low contrast, anatomical proximity, and imaging artifacts. This model incorporates spatial information from the intuitive model and uses total variation regularization to improve segmentation smoothness by applying a penalty to changes in gradient. This dual-model approach improves accuracy and consistency in segmenting high-risk clinical target volumes and organs at risk in cervical HDR-BT. To validate the proposed method, 32 cervical cancer patients treated with tandem and ovoid (T&O) HDR brachytherapy (3-5 fractions, 115 CT images) were retrospectively selected. The method's performance was assessed using four-fold cross-validation, comparing segmentation results to manual contours across five metrics: Dice similarity coefficient (DSC), 95% Hausdorff distance (HD<sub>95</sub>), mean surface distance (MSD), center-of-mass distance (CMD), and volume difference (VD). Dosimetric evaluations included D90 for HR-CTV and D2cc for OARs. The proposed method demonstrates high segmentation accuracy for HR-CTV, bladder, and rectum, achieving DSC values of 0.79 ± 0.06, 0.83 ± 0.10, and 0.76 ± 0.15, MSD values of 1.92 ± 0.77 mm, 2.24 ± 1.20 mm, and 4.18 ± 3.74 mm, and absolute VD values of 5.34 ± 4.85 cc, 17.16 ± 17.38 cc, and 18.54 ± 16.83 cc, respectively. Despite challenges in bowel and sigmoid segmentation due to poor soft tissue contrast in CT and variability in manual contouring (ground truth volumes of 128.48 ± 95.9 cc and 51.87 ± 40.67 cc), the method significantly outperforms two state-of-the-art methods on DSC, MSD, and CMD metrics (p-value < 0.05). For HR-CTV, the mean absolute D90 difference was 0.42 ± 1.17 Gy (p-value > 0.05), less than 5% of the prescription dose. Over 75% of cases showed changes within ± 0.5 Gy, and fewer than 10% exceeded ± 1 Gy. The mean and variation in structure volume and D2cc parameters between manual and segmented contours for OARs showed no significant differences (p-value > 0.05), with mean absolute D2cc differences within 0.5 Gy, except for the bladder, which exhibited higher variability (0.97 Gy). Our innovative auto-contouring method showed promising results in segmenting HR-CTV and OARs from pCT, potentially enhancing the efficiency of HDR BT cervical treatment planning. Further validation and clinical implementation are required to fully realize its clinical benefits.

Preoperative risk assessment of invasive endometrial cancer using MRI-based radiomics: a systematic review and meta-analysis.

Gao Y, Liang F, Tian X, Zhang G, Zhang H

pubmed logopapersMay 24 2025
Image-derived machine learning (ML) is a robust and growing field in diagnostic imaging systems for both clinicians and radiologists. Accurate preoperative radiological evaluation of the invasive ability of endometrial cancer (EC) can increase the degree of clinical benefit. The present study aimed to investigate the diagnostic performance of magnetic resonance imaging (MRI)-derived artificial intelligence for accurate preoperative assessment of the invasive risk. The PubMed, Embase, Cochrane Library and Web of Science databases were searched, and pertinent English-language papers were collected. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and positive and negative likelihood ratios (PLR and NLR, respectively) of all the papers were calculated using Stata software. The results were plotted on a summary receiver operating characteristic (SROC) curve, publication bias and threshold effects were evaluated, and meta-regression and subgroup analyses were conducted to explore the possible causes of intratumoral heterogeneity. MRI-based radiomics revealed pooled sensitivity (SEN) and specificity (SPE) values of 0.85 and 0.82 for the prediction of high-grade EC; 0.80 and 0.85 for deep myometrial invasion (DMI); 0.85 and 0.73 for lymphovascular space invasion (LVSI); 0.79 and 0.85 for microsatellite instability (MSI); and 0.90 and 0.72 for lymph node metastasis (LNM), respectively. For LVSI prediction and high-grade histological analysis, meta-regression revealed that the image segmentation and MRI-based radiomics modeling contributed to heterogeneity (p = 0.003 and 0.04). Through a systematic review and meta-analysis of the reported literature, preoperative MRI-derived ML could help clinicians accurately evaluate EC risk factors, potentially guiding individual treatment thereafter.

Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.

White OA, Shur J, Castagnoli F, Charles-Edwards G, Whitcher B, Collins DJ, Cashmore MTD, Hall MG, Thomas SA, Thompson A, Harrison CA, Hopkinson G, Koh DM, Winfield JM

pubmed logopapersMay 24 2025
AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions. 58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance. Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs. IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.

Anatomy-Guided Multitask Learning for MRI-Based Classification of Placenta Accreta Spectrum and its Subtypes

Hai Jiang, Qiongting Liu, Yuanpin Zhou, Jiawei Pan, Ting Song, Yao Lu

arxiv logopreprintMay 23 2025
Placenta Accreta Spectrum Disorders (PAS) pose significant risks during pregnancy, frequently leading to postpartum hemorrhage during cesarean deliveries and other severe clinical complications, with bleeding severity correlating to the degree of placental invasion. Consequently, accurate prenatal diagnosis of PAS and its subtypes-placenta accreta (PA), placenta increta (PI), and placenta percreta (PP)-is crucial. However, existing guidelines and methodologies predominantly focus on the presence of PAS, with limited research addressing subtype recognition. Additionally, previous multi-class diagnostic efforts have primarily relied on inefficient two-stage cascaded binary classification tasks. In this study, we propose a novel convolutional neural network (CNN) architecture designed for efficient one-stage multiclass diagnosis of PAS and its subtypes, based on 4,140 magnetic resonance imaging (MRI) slices. Our model features two branches: the main classification branch utilizes a residual block architecture comprising multiple residual blocks, while the second branch integrates anatomical features of the uteroplacental area and the adjacent uterine serous layer to enhance the model's attention during classification. Furthermore, we implement a multitask learning strategy to leverage both branches effectively. Experiments conducted on a real clinical dataset demonstrate that our model achieves state-of-the-art performance.

A Foundation Model Framework for Multi-View MRI Classification of Extramural Vascular Invasion and Mesorectal Fascia Invasion in Rectal Cancer

Yumeng Zhang, Zohaib Salahuddin, Danial Khan, Shruti Atul Mali, Henry C. Woodruff, Sina Amirrajab, Eduardo Ibor-Crespo, Ana Jimenez-Pastor, Luis Marti-Bonmati, Philippe Lambin

arxiv logopreprintMay 23 2025
Background: Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is pivotal for risk-stratified management of rectal cancer, yet visual assessment is subjective and vulnerable to inter-institutional variability. Purpose: To develop and externally evaluate a multicenter, foundation-model-driven framework that automatically classifies EVI and MFI on axial and sagittal T2-weighted MRI. Methods: This retrospective study used 331 pre-treatment rectal cancer MRI examinations from three European hospitals. After TotalSegmentator-guided rectal patch extraction, a self-supervised frequency-domain harmonization pipeline was trained to minimize scanner-related contrast shifts. Four classifiers were compared: ResNet50, SeResNet, the universal biomedical pretrained transformer (UMedPT) with a lightweight MLP head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR). Results: UMedPT_LR achieved the best EVI detection when axial and sagittal features were fused (AUC = 0.82; sensitivity = 0.75; F1 score = 0.73), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.74). The highest MFI performance was attained by UMedPT on axial harmonized images (AUC = 0.77), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.75). Frequency-domain harmonization improved MFI classification but variably affected EVI performance. Conventional CNNs (ResNet50, SeResNet) underperformed, especially in F1 score and balanced accuracy. Conclusion: These findings demonstrate that combining foundation model features, harmonization, and multi-view fusion significantly enhances diagnostic performance in rectal MRI.

Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment

Danial Khan, Zohaib Salahuddin, Yumeng Zhang, Sheng Kuang, Shruti Atul Mali, Henry C. Woodruff, Sina Amirrajab, Rachel Cavill, Eduardo Ibor-Crespo, Ana Jimenez-Pastor, Adrian Galiana-Bordera, Paula Jimenez Gomez, Luis Marti-Bonmati, Philippe Lambin

arxiv logopreprintMay 23 2025
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI. The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the UMedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions. The system was developed using 1,500 PI-CAI cases for segmentation and 617 biparametric MRIs with metadata from the CHAIMELEON challenge for classification (split into 70% training, 10% validation, and 20% testing). Segmentation achieved mean Dice scores of 0.95 (gland), 0.94 (peripheral zone), and 0.92 (transition zone). Incorporating gland priors improved AUC from 0.69 to 0.72, with a three-scale ensemble achieving top performance (AUC = 0.79, composite score = 0.76), outperforming the 2024 CHAIMELEON challenge winners. Counterfactual heatmaps reliably highlighted lesions within segmented regions, enhancing model interpretability. In a prospective multi-center in-silico trial with 20 clinicians, AI assistance increased diagnostic accuracy from 0.72 to 0.77 and Cohen's kappa from 0.43 to 0.53, while reducing review time per case by 40%. These results demonstrate that anatomy-aware foundation models with counterfactual explainability can enable accurate, interpretable, and efficient PCa risk assessment, supporting their potential use as virtual biopsies in clinical practice.

Renal Transplant Survival Prediction From Unsupervised Deep Learning-Based Radiomics on Early Dynamic Contrast-Enhanced MRI.

Milecki L, Bodard S, Kalogeiton V, Poinard F, Tissier AM, Boudhabhay I, Correas JM, Anglicheau D, Vakalopoulou M, Timsit MO

pubmed logopapersMay 23 2025
End-stage renal disease is characterized by an irreversible decline in kidney function. Despite a risk of chronic dysfunction of the transplanted kidney, renal transplantation is considered the most effective solution among available treatment options. Clinical attributes of graft survival prediction, such as allocation variables or results of pathological examinations, have been widely studied. Nevertheless, medical imaging is clinically used only to assess current transplant status. This study investigated the use of unsupervised deep learning-based algorithms to identify rich radiomic features that may be linked to graft survival from early dynamic contrast-enhanced magnetic resonance imaging data of renal transplants. A retrospective cohort of 108 transplanted patients (mean age 50 +/- 15, 67 men) undergoing systematic magnetic resonance imaging follow-up examinations (2013 to 2015) was used to train deep convolutional neural network models based on an unsupervised contrastive learning approach. 5-year graft survival analysis was performed from the obtained artificial intelligence radiomics features using penalized Cox models and Kaplan-Meier estimates. Using a validation set of 48 patients (mean age 54 +/- 13, 30 men) having 1-month post-transplantation magnetic resonance imaging examinations, the proposed approach demonstrated promising 5-year graft survival capability with a 72.7% concordance index from the artificial intelligence radiomics features. Unsupervised clustering of these radiomics features enabled statistically significant stratification of patients (p=0.029). This proof-of-concept study exposed the promising capability of artificial intelligence algorithms to extract relevant radiomics features that enable renal transplant survival prediction. Further studies are needed to demonstrate the robustness of this technique, and to identify appropriate procedures for integration of such an approach into multimodal and clinical settings.

Deep Learning and Radiomic Signatures Associated with Tumor Immune Heterogeneity Predict Microvascular Invasion in Colon Cancer.

Jia J, Wang J, Zhang Y, Bai G, Han L, Niu Y

pubmed logopapersMay 23 2025
This study aims to develop and validate a deep learning radiomics signature (DLRS) that integrates radiomics and deep learning features for the non-invasive prediction of microvascular invasion (MVI) in patients with colon cancer (CC). Furthermore, the study explores the potential association between DLRS and tumor immune heterogeneity. This study is a multi-center retrospective study that included a total of 1007 patients with colon cancer (CC) from three medical centers and The Cancer Genome Atlas (TCGA-COAD) database. Patients from Medical Centers 1 and 2 were divided into a training cohort (n = 592) and an internal validation cohort (n = 255) in a 7:3 ratio. Medical Center 3 (n = 135) and the TCGA-COAD database (n = 25) were used as external validation cohorts. Radiomics and deep learning features were extracted from contrast-enhanced venous-phase CT images. Feature selection was performed using machine learning algorithms, and three predictive models were developed: a radiomics model, a deep learning (DL) model, and a combined deep learning radiomics (DLR) model. The predictive performance of each model was evaluated using multiple metrics, including the area under the curve (AUC), sensitivity, and specificity. Additionally, differential gene expression analysis was conducted on RNA-seq data from the TCGA-COAD dataset to explore the association between the DLRS and tumor immune heterogeneity within the tumor microenvironment. Compared to the standalone radiomics and deep learning models, DLR fusion model demonstrated superior predictive performance. The AUC for the internal validation cohort was 0.883 (95% CI: 0.828-0.937), while the AUC for the external validation cohort reached 0.855 (95% CI: 0.775-0.935). Furthermore, stratifying patients from the TCGA-COAD dataset into high-risk and low-risk groups based on the DLRS revealed significant differences in immune cell infiltration and immune checkpoint expression between the two groups (P < 0.05). The contrast-enhanced CT-based DLR fusion model developed in this study effectively predicts the MVI status in patients with CC. This model serves as a non-invasive preoperative assessment tool and reveals a potential association between the DLRS and immune heterogeneity within the tumor microenvironment, providing insights to optimize individualized treatment strategies.

Ovarian Cancer Screening: Recommendations and Future Prospects.

Chiu S, Staley H, Jeevananthan P, Mascarenhas S, Fotopoulou C, Rockall A

pubmed logopapersMay 23 2025
Ovarian cancer remains a significant cause of mortality among women, largely due to challenges in early detection. Current screening strategies, including transvaginal ultrasound and CA125 testing, have limited sensitivity and specificity, particularly in asymptomatic women or those with early-stage disease. The European Society of Gynaecological Oncology, the European Society for Medical Oncology, the European Society of Pathology, and other health organizations currently do not recommend routine population-based screening for ovarian cancer due to the high rates of false-positives and the absence of a reliable early detection method.This review examines existing ovarian cancer screening guidelines and explores recent advances in diagnostic technologies including radiomics, artificial intelligence, point-of-care testing, and novel detection methods.Emerging technologies show promise with respect to improving ovarian cancer detection by enhancing sensitivity and specificity compared to traditional methods. Artificial intelligence and radiomics have potential for revolutionizing ovarian cancer screening by identifying subtle diagnostic patterns, while liquid biopsy-based approaches and cell-free DNA profiling enable tumor-specific biomarker detection. Minimally invasive methods, such as intrauterine lavage and salivary diagnostics, provide avenues for population-wide applicability. However, large-scale validation is required to establish these techniques as effective and reliable screening options. · Current ovarian cancer screening methods lack sensitivity and specificity for early-stage detection.. · Emerging technologies like artificial intelligence, radiomics, and liquid biopsy offer improved diagnostic accuracy.. · Large-scale clinical validation is required, particularly for baseline-risk populations.. · Chiu S, Staley H, Jeevananthan P et al. Ovarian Cancer Screening: Recommendations and Future Prospects. Rofo 2025; DOI 10.1055/a-2589-5696.
Page 32 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.