Sort by:
Page 30 of 58575 results

Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network

Mahin Montasir Afif, Abdullah Al Noman, K. M. Tahsin Kabir, Md. Mortuza Ahmmed, Md. Mostafizur Rahman, Mufti Mahmud, Md. Ashraful Babu

arxiv logopreprintJun 20 2025
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.

Artificial intelligence-assisted decision-making in third molar assessment using ChatGPT: is it really a valid tool?

Grinberg N, Ianculovici C, Whitefield S, Kleinman S, Feldman S, Peleg O

pubmed logopapersJun 20 2025
Artificial intelligence (AI) is becoming increasingly popular in medicine. The current study aims to investigate whether an AI-based chatbot, such as ChatGPT, could be a valid tool for assisting in decision-making when assessing mandibular third molars before extractions. Panoramic radiographs were collected from a publicly available library. Mandibular third molars were assessed by position and depth. Two specialists evaluated each case regarding the need for CBCT referral, followed by introducing all cases to ChatGPT under a uniform script to decide the need for further CBCT radiographs. The process was performed first without any guidelines, Second, after introducing the guidelines presented by Rood et al. (1990), and third, with additional test cases. ChatGPT and a specialist's decision were compared and analyzed using Cohen's kappa test and the Cochrane-Mantel--Haenszel test to consider the effect of different tooth positions. All analyses were made under a 95% confidence level. The study evaluated 184 molars. Without any guidelines, ChatGPT correlated with the specialist in 49% of cases, with no statistically significant agreement (kappa < 0.1), followed by 70% and 91% with moderate (kappa = 0.39) and near-perfect (kappa = 0.81) agreement, respectively, after the second and third rounds (p < 0.05). The high correlation between the specialist and the chatbot was preserved when analyzed by the different tooth locations and positions (p < 0.01). ChatGPT has shown the ability to analyze third molars prior to surgical interventions using accepted guidelines with substantial correlation to specialists.

BioTransX: A novel bi-former based hybrid model with bi-level routing attention for brain tumor classification with explainable insights.

Rajpoot R, Jain S, Semwal VB

pubmed logopapersJun 20 2025
Brain tumors, known for their life-threatening implications, underscore the urgency of precise and interpretable early detection. Expertise remains essential for accurate identification through MRI scans due to the intricacies involved. However, the growing recognition of automated detection systems holds the potential to enhance accuracy and improve interpretability. By consistently providing easily comprehensible results, these automated solutions could boost the overall efficiency and effectiveness of brain tumor diagnosis, promising a transformative era in healthcare. This paper introduces a new hybrid model, BioTransX, which uses a bi-former encoder mechanism, a dynamic sparse attention-based transformer, in conjunction with ensemble convolutional networks. Recognizing the importance of better contrast and data quality, we applied Contrast-Limited Adaptive Histogram Equalization (CLAHE) during the initial data processing stage. Additionally, to address the crucial aspect of model interpretability, we integrated Grad-CAM and Gradient Attention Rollout, which elucidate decisions by highlighting influential regions within medical images. Our hybrid deep learning model was primarily evaluated on the Kaggle MRI dataset for multi-class brain tumor classification, achieving a mean accuracy and F1-score of 99.29%. To validate its generalizability and robustness, BioTransX was further tested on two additional benchmark datasets, BraTS and Figshare, where it consistently maintained high performance across key evaluation metrics. The transformer-based hybrid model demonstrated promising performance in explainable identification and offered notable advantages in computational efficiency and memory usage. These strengths differentiate BioTransX from existing models in the literature and make it ideal for real-world deployment in resource-constrained clinical infrastructures.

The Clinical Significance of Femoral and Tibial Anatomy for Anterior Cruciate Ligament Injury and Reconstruction.

Liew FF, Liang J

pubmed logopapersJun 19 2025
The anterior cruciate ligament (ACL) is a crucial stabilizer of the knee joint, and its injury risk and surgical outcomes are closely linked to femoral and tibial anatomy. This review focuses on current evidence on how skeletal parameters, such as femoral intercondylar notch morphology, tibial slope, and insertion site variations-influence ACL biomechanics. A narrowed or concave femoral notch raises the risk of impingement, while a higher posterior tibial slope makes anterior tibial translation worse, which increases ACL strain. Gender disparities exist, with females exhibiting smaller notch dimensions, and hormonal fluctuations may contribute to ligament laxity. Anatomical changes that come with getting older make clinical management even harder. Adolescent patients have problems with epiphyseal growth, and older patients have to deal with degenerative notch narrowing and lower bone density. Preoperative imaging (MRI, CT, and 3D reconstruction) enables precise assessment of anatomical variations, guiding individualized surgical strategies. Optimal femoral and tibial tunnel placement during reconstruction is vital to replicate native ACL biomechanics and avoid graft failure. Emerging technologies, including AI-driven segmentation and deep learning models, enhance risk prediction and intraoperative precision. Furthermore, synergistic factors, such as meniscal integrity and posterior oblique ligament anatomy, need to be integrated into comprehensive evaluations. Future directions emphasize personalized approaches, combining advanced imaging, neuromuscular training, and artificial intelligence to optimize prevention, diagnosis, and rehabilitation. Addressing age-specific challenges, such as growth plate preservation in pediatric cases and osteoarthritis management in the elderly, will improve long-term outcomes. Ultimately, a nuanced understanding of skeletal anatomy and technological integration holds promise for reducing ACL reinjury rates and enhancing patient recovery.

Artificial Intelligence Language Models to Translate Professional Radiology Mammography Reports Into Plain Language - Impact on Interpretability and Perception by Patients.

Pisarcik D, Kissling M, Heimer J, Farkas M, Leo C, Kubik-Huch RA, Euler A

pubmed logopapersJun 19 2025
This study aimed to evaluate the interpretability and patient perception of AI-translated mammography and sonography reports, focusing on comprehensibility, follow-up recommendations, and conveyed empathy using a survey. In this observational study, three fictional mammography and sonography reports with BI-RADS categories 3, 4, and 5 were created. These reports were repeatedly translated to plain language by three different large language models (LLM: ChatGPT-4, ChatGPT-4o, Google Gemini). In a first step, the best of these repeatedly translated reports for each BI-RADS category and LLM was selected by two experts in breast imaging considering factual correctness, completeness, and quality. In a second step, female participants compared and rated the translated reports regarding comprehensibility, follow-up recommendations, conveyed empathy, and additional value of each report using a survey with Likert scales. Statistical analysis included cumulative link mixed models and the Plackett-Luce model for ranking preferences. 40 females participated in the survey. GPT-4 and GPT-4o were rated significantly higher than Gemini across all categories (P<.001). Participants >50 years of age rated the reports significantly higher as compared to participants of 18-29 years of age (P<.05). Higher education predicted lower ratings (P=.02). No prior mammography increased scores (P=.03), and AI-experience had no effect (P=.88). Ranking analysis showed GPT-4o as the most preferred (P=.48), followed by GPT-4 (P=.37), with Gemini ranked last (P=.15). Patient preference differed among AI-translated radiology reports. Compared to a traditional report using radiological language, AI-translated reports add value for patients, enhance comprehensibility and empathy and therefore hold the potential to improve patient communication in breast imaging.

Non-Invasive Diagnosis of Chronic Myocardial Infarction via Composite In-Silico-Human Data Learning.

Mehdi RR, Kadivar N, Mukherjee T, Mendiola EA, Bersali A, Shah DJ, Karniadakis G, Avazmohammadi R

pubmed logopapersJun 19 2025
Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, a completely non-invasive methodology is developed to identify the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, the remarkable performance of a multi-fidelity ML model is demonstrated, which combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. The results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

Artificial intelligence in imaging diagnosis of liver tumors: current status and future prospects.

Hori M, Suzuki Y, Sofue K, Sato J, Nishigaki D, Tomiyama M, Nakamoto A, Murakami T, Tomiyama N

pubmed logopapersJun 19 2025
Liver cancer remains a significant global health concern, ranking as the sixth most common malignancy and the third leading cause of cancer-related deaths worldwide. Medical imaging plays a vital role in managing liver tumors, particularly hepatocellular carcinoma (HCC) and metastatic lesions. However, the large volume and complexity of imaging data can make accurate and efficient interpretation challenging. Artificial intelligence (AI) is recognized as a promising tool to address these challenges. Therefore, this review aims to explore the recent advances in AI applications in liver tumor imaging, focusing on key areas such as image reconstruction, image quality enhancement, lesion detection, tumor characterization, segmentation, and radiomics. Among these, AI-based image reconstruction has already been widely integrated into clinical workflows, helping to enhance image quality while reducing radiation exposure. While the adoption of AI-assisted diagnostic tools in liver imaging has lagged behind other fields, such as chest imaging, recent developments are driving their increasing integration into clinical practice. In the future, AI is expected to play a central role in various aspects of liver cancer care, including comprehensive image analysis, treatment planning, response evaluation, and prognosis prediction. This review offers a comprehensive overview of the status and prospects of AI applications in liver tumor imaging.

Data extraction from free-text stroke CT reports using GPT-4o and Llama-3.3-70B: the impact of annotation guidelines.

Wihl J, Rosenkranz E, Schramm S, Berberich C, Griessmair M, Woźnicki P, Pinto F, Ziegelmayer S, Adams LC, Bressem KK, Kirschke JS, Zimmer C, Wiestler B, Hedderich D, Kim SH

pubmed logopapersJun 19 2025
To evaluate the impact of an annotation guideline on the performance of large language models (LLMs) in extracting data from stroke computed tomography (CT) reports. The performance of GPT-4o and Llama-3.3-70B in extracting ten imaging findings from stroke CT reports was assessed in two datasets from a single academic stroke center. Dataset A (n = 200) was a stratified cohort including various pathological findings, whereas dataset B (n = 100) was a consecutive cohort. Initially, an annotation guideline providing clear data extraction instructions was designed based on a review of cases with inter-annotator disagreements in dataset A. For each LLM, data extraction was performed under two conditions: with the annotation guideline included in the prompt and without it. GPT-4o consistently demonstrated superior performance over Llama-3.3-70B under identical conditions, with micro-averaged precision ranging from 0.83 to 0.95 for GPT-4o and from 0.65 to 0.86 for Llama-3.3-70B. Across both models and both datasets, incorporating the annotation guideline into the LLM input resulted in higher precision rates, while recall rates largely remained stable. In dataset B, the precision of GPT-4o and Llama-3-70B improved from 0.83 to 0.95 and from 0.87 to 0.94, respectively. Overall classification performance with and without the annotation guideline was significantly different in five out of six conditions. GPT-4o and Llama-3.3-70B show promising performance in extracting imaging findings from stroke CT reports, although GPT-4o steadily outperformed Llama-3.3-70B. We also provide evidence that well-defined annotation guidelines can enhance LLM data extraction accuracy. Annotation guidelines can improve the accuracy of LLMs in extracting findings from radiological reports, potentially optimizing data extraction for specific downstream applications. LLMs have utility in data extraction from radiology reports, but the role of annotation guidelines remains underexplored. Data extraction accuracy from stroke CT reports by GPT-4o and Llama-3.3-70B improved when well-defined annotation guidelines were incorporated into the model prompt. Well-defined annotation guidelines can improve the accuracy of LLMs in extracting imaging findings from radiological reports.

RadioRAG: Online Retrieval-augmented Generation for Radiology Question Answering.

Tayebi Arasteh S, Lotfinia M, Bressem K, Siepmann R, Adams L, Ferber D, Kuhl C, Kather JN, Nebelung S, Truhn D

pubmed logopapersJun 18 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To evaluate diagnostic accuracy of various large language models (LLMs) when answering radiology-specific questions with and without access to additional online, up-to-date information via retrieval-augmented generation (RAG). Materials and Methods The authors developed Radiology RAG (RadioRAG), an end-to-end framework that retrieves data from authoritative radiologic online sources in real-time. RAG incorporates information retrieval from external sources to supplement the initial prompt, grounding the model's response in relevant information. Using 80 questions from the RSNA Case Collection across radiologic subspecialties and 24 additional expert-curated questions with reference standard answers, LLMs (GPT-3.5-turbo, GPT-4, Mistral-7B, Mixtral-8 × 7B, and Llama3 [8B and 70B]) were prompted with and without RadioRAG in a zero-shot inference scenario (temperature ≤ 0.1, top- <i>P</i> = 1). RadioRAG retrieved context-specific information from www.radiopaedia.org. Accuracy of LLMs with and without RadioRAG in answering questions from each dataset was assessed. Statistical analyses were performed using bootstrapping while preserving pairing. Additional assessments included comparison of model with human performance and comparison of time required for conventional versus RadioRAG-powered question answering. Results RadioRAG improved accuracy for some LLMs, including GPT-3.5-turbo [74% (59/80) versus 66% (53/80), FDR = 0.03] and Mixtral-8 × 7B [76% (61/80) versus 65% (52/80), FDR = 0.02] on the RSNA-RadioQA dataset, with similar trends in the ExtendedQA dataset. Accuracy exceeded (FDR ≤ 0.007) that of a human expert (63%, (50/80)) for these LLMs, while not for Mistral-7B-instruct-v0.2, Llama3-8B, and Llama3-70B (FDR ≥ 0.21). RadioRAG reduced hallucinations for all LLMs (rates from 6-25%). RadioRAG increased estimated response time fourfold. Conclusion RadioRAG shows potential to improve LLM accuracy and factuality in radiology question answering by integrating real-time domain-specific data. ©RSNA, 2025.

Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction

Vincent Roca, Marc Tommasi, Paul Andrey, Aurélien Bellet, Markus D. Schirmer, Hilde Henon, Laurent Puy, Julien Ramon, Grégory Kuchcinski, Martin Bretzner, Renaud Lopes

arxiv logopreprintJun 18 2025
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.
Page 30 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.