Sort by:
Page 30 of 34338 results

High-Performance Prompting for LLM Extraction of Compression Fracture Findings from Radiology Reports.

Kanani MM, Monawer A, Brown L, King WE, Miller ZD, Venugopal N, Heagerty PJ, Jarvik JG, Cohen T, Cross NM

pubmed logopapersMay 16 2025
Extracting information from radiology reports can provide critical data to empower many radiology workflows. For spinal compression fractures, these data can facilitate evidence-based care for at-risk populations. Manual extraction from free-text reports is laborious, and error-prone. Large language models (LLMs) have shown promise; however, fine-tuning strategies to optimize performance in specific tasks can be resource intensive. A variety of prompting strategies have achieved similar results with fewer demands. Our study pioneers the use of Meta's Llama 3.1, together with prompt-based strategies, for automated extraction of compression fractures from free-text radiology reports, outputting structured data without model training. We tested performance on a time-based sample of CT exams covering the spine from 2/20/2024 to 2/22/2024 acquired across our healthcare enterprise (637 anonymized reports, age 18-102, 47% Female). Ground truth annotations were manually generated and compared against the performance of three models (Llama 3.1 70B, Llama 3.1 8B, and Vicuna 13B) with nine different prompting configurations for a total of 27 model/prompt experiments. The highest F1 score (0.91) was achieved by the 70B Llama 3.1 model when provided with a radiologist-written background, with similar results when the background was written by a separate LLM (0.86). The addition of few-shot examples to these prompts had variable impact on F1 measurements (0.89, 0.84 respectively). Comparable ROC-AUC and PR-AUC performance was observed. Our work demonstrated that an open-weights LLM excelled at extracting compression fractures findings from free-text radiology reports using prompt-based techniques without requiring extensive manually labeled examples for model training.

Escarcitys: A framework for enhancing medical image classification performance in scarcity of trainable samples scenarios.

Wang T, Dai Q, Xiong W

pubmed logopapersMay 16 2025
In the field of healthcare, the acquisition and annotation of medical images present significant challenges, resulting in a scarcity of trainable samples. This data limitation hinders the performance of deep learning models, creating bottlenecks in clinical applications. To address this issue, we construct a framework (EScarcityS) aimed at enhancing the success rate of disease diagnosis in scarcity of trainable medical image scenarios. Firstly, considering that Transformer-based deep learning networks rely on a large amount of trainable data, this study takes into account the unique characteristics of pathological regions. By extracting the feature representations of all particles in medical images at different granularities, a multi-granularity Transformer network (MGVit) is designed. This network leverages additional prior knowledge to assist the Transformer network during training, thereby reducing the data requirement to some extent. Next, the importance maps of particles at different granularities, generated by MGVit, are fused to construct disease probability maps corresponding to the images. Based on these maps, a disease probability map-guided diffusion generation model is designed to generate more realistic and interpretable synthetic data. Subsequently, authentic and synthetical data are mixed and used to retrain MGVit, aiming to enhance the accuracy of medical image classification in scarcity of trainable medical image scenarios. Finally, we conducted detailed experiments on four real medical image datasets to validate the effectiveness of EScarcityS and its specific modules.

Leveraging Vision Transformers in Multimodal Models for Retinal OCT Analysis.

Feretzakis G, Karakosta C, Gkoulalas-Divanis A, Bisoukis A, Boufeas IZ, Bazakidou E, Sakagianni A, Kalles D, Verykios VS

pubmed logopapersMay 15 2025
Optical Coherence Tomography (OCT) has become an indispensable imaging modality in ophthalmology, providing high-resolution cross-sectional images of the retina. Accurate classification of OCT images is crucial for diagnosing retinal diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). This study explores the efficacy of various deep learning models, including convolutional neural networks (CNNs) and Vision Transformers (ViTs), in classifying OCT images. We also investigate the impact of integrating metadata (patient age, sex, eye laterality, and year) into the classification process, even when a significant portion of metadata is missing. Our results demonstrate that multimodal models leveraging both image and metadata inputs, such as the Multimodal ResNet18, can achieve competitive performance compared to image-only models, such as DenseNet121. Notably, DenseNet121 and Multimodal ResNet18 achieved the highest accuracy of 95.16%, with DenseNet121 showing a slightly higher F1-score of 0.9313. The multimodal ViT-based model also demonstrated promising results, achieving an accuracy of 93.22%, indicating the potential of Vision Transformers (ViTs) in medical image analysis, especially for handling complex multimodal data.

Predicting Immunotherapy Response in Unresectable Hepatocellular Carcinoma: A Comparative Study of Large Language Models and Human Experts.

Xu J, Wang J, Li J, Zhu Z, Fu X, Cai W, Song R, Wang T, Li H

pubmed logopapersMay 15 2025
Hepatocellular carcinoma (HCC) is an aggressive cancer with limited biomarkers for predicting immunotherapy response. Recent advancements in large language models (LLMs) like GPT-4, GPT-4o, and Gemini offer the potential for enhancing clinical decision-making through multimodal data analysis. However, their effectiveness in predicting immunotherapy response, especially compared to human experts, remains unclear. This study assessed the performance of GPT-4, GPT-4o, and Gemini in predicting immunotherapy response in unresectable HCC, compared to radiologists and oncologists of varying expertise. A retrospective analysis of 186 patients with unresectable HCC utilized multimodal data (clinical and CT images). LLMs were evaluated with zero-shot prompting and two strategies: the 'voting method' and the 'OR rule method' for improved sensitivity. Performance metrics included accuracy, sensitivity, area under the curve (AUC), and agreement across LLMs and physicians.GPT-4o, using the 'OR rule method,' achieved 65% accuracy and 47% sensitivity, comparable to intermediate physicians but lower than senior physicians (accuracy: 72%, p = 0.045; sensitivity: 70%, p < 0.0001). Gemini-GPT, combining GPT-4, GPT-4o, and Gemini, achieved an AUC of 0.69, similar to senior physicians (AUC: 0.72, p = 0.35), with 68% accuracy, outperforming junior and intermediate physicians while remaining comparable to senior physicians (p = 0.78). However, its sensitivity (58%) was lower than senior physicians (p = 0.0097). LLMs demonstrated higher inter-model agreement (κ = 0.59-0.70) than inter-physician agreement, especially among junior physicians (κ = 0.15). This study highlights the potential of LLMs, particularly Gemini-GPT, as valuable tools in predicting immunotherapy response for HCC.

Scientific Evidence for Clinical Text Summarization Using Large Language Models: Scoping Review.

Bednarczyk L, Reichenpfader D, Gaudet-Blavignac C, Ette AK, Zaghir J, Zheng Y, Bensahla A, Bjelogrlic M, Lovis C

pubmed logopapersMay 15 2025
Information overload in electronic health records requires effective solutions to alleviate clinicians' administrative tasks. Automatically summarizing clinical text has gained significant attention with the rise of large language models. While individual studies show optimism, a structured overview of the research landscape is lacking. This study aims to present the current state of the art on clinical text summarization using large language models, evaluate the level of evidence in existing research and assess the applicability of performance findings in clinical settings. This scoping review complied with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Literature published between January 1, 2019, and June 18, 2024, was identified from 5 databases: PubMed, Embase, Web of Science, IEEE Xplore, and ACM Digital Library. Studies were excluded if they did not describe transformer-based models, did not focus on clinical text summarization, did not engage with free-text data, were not original research, were nonretrievable, were not peer-reviewed, or were not in English, French, Spanish, or German. Data related to study context and characteristics, scope of research, and evaluation methodologies were systematically collected and analyzed by 3 authors independently. A total of 30 original studies were included in the analysis. All used observational retrospective designs, mainly using real patient data (n=28, 93%). The research landscape demonstrated a narrow research focus, often centered on summarizing radiology reports (n=17, 57%), primarily involving data from the intensive care unit (n=15, 50%) of US-based institutions (n=19, 73%), in English (n=26, 87%). This focus aligned with the frequent reliance on the open-source Medical Information Mart for Intensive Care dataset (n=15, 50%). Summarization methodologies predominantly involved abstractive approaches (n=17, 57%) on single-document inputs (n=4, 13%) with unstructured data (n=13, 43%), yet reporting on methodological details remained inconsistent across studies. Model selection involved both open-source models (n=26, 87%) and proprietary models (n=7, 23%). Evaluation frameworks were highly heterogeneous. All studies conducted internal validation, but external validation (n=2, 7%), failure analysis (n=6, 20%), and patient safety risks analysis (n=1, 3%) were infrequent, and none reported bias assessment. Most studies used both automated metrics and human evaluation (n=16, 53%), while 10 (33%) used only automated metrics, and 4 (13%) only human evaluation. Key barriers hinder the translation of current research into trustworthy, clinically valid applications. Current research remains exploratory and limited in scope, with many applications yet to be explored. Performance assessments often lack reliability, and clinical impact evaluations are insufficient raising concerns about model utility, safety, fairness, and data privacy. Advancing the field requires more robust evaluation frameworks, a broader research scope, and a stronger focus on real-world applicability.

Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images.

Reka S, Praba TS, Prasanna M, Reddy VNN, Amirtharajan R

pubmed logopapersMay 15 2025
PCOS (Poly-Cystic Ovary Syndrome) is a multifaceted disorder that often affects the ovarian morphology of women of their reproductive age, resulting in the development of numerous cysts on the ovaries. Ultrasound imaging typically diagnoses PCOS, which helps clinicians assess the size, shape, and existence of cysts in the ovaries. Nevertheless, manual ultrasound image analysis is often challenging and time-consuming, resulting in inter-observer variability. To effectively treat PCOS and prevent its long-term effects, prompt and accurate diagnosis is crucial. In such cases, a prediction model based on deep learning can help physicians by streamlining the diagnosis procedure, reducing time and potential errors. This article proposes a novel integrated approach, QEI-SAM (Quality Enhanced Image - Segment Anything Model), for enhancing image quality and ovarian cyst segmentation for accurate prediction. GAN (Generative Adversarial Networks) and CNN (Convolutional Neural Networks) are the most recent cutting-edge innovations that have supported the system in attaining the expected result. The proposed QEI-SAM model used Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) for image enhancement to increase the resolution, sharpening the edges and restoring the finer structure of the ultrasound ovary images and achieved a better SSIM of 0.938, PSNR value of 38.60 and LPIPS value of 0.0859. Then, it incorporates the Segment Anything Model (SAM) to segment ovarian cysts and achieve the highest Dice coefficient of 0.9501 and IoU score of 0.9050. Furthermore, Convolutional Neural Network - ResNet 50, ResNet 101, VGG 16, VGG 19, AlexNet and Inception v3 have been implemented to diagnose PCOS promptly. Finally, VGG 19 has achieved the highest accuracy of 99.31%.

"MR Fingerprinting for Imaging Brain Hemodynamics and Oxygenation".

Coudert T, Delphin A, Barrier A, Barbier EL, Lemasson B, Warnking JM, Christen T

pubmed logopapersMay 15 2025
Over the past decade, several studies have explored the potential of magnetic resonance fingerprinting (MRF) for the quantification of brain hemodynamics, oxygenation, and perfusion. Recent advances in simulation models and reconstruction frameworks have also significantly enhanced the accuracy of vascular parameter estimation. This review provides an overview of key vascular MRF studies, emphasizing advancements in geometrical models for vascular simulations, novel sequences, and state-of-the-art reconstruction techniques incorporating machine learning and deep learning algorithms. Both pre-clinical and clinical applications are discussed. Based on these findings, we outline future directions and development areas that need to be addressed to facilitate their clinical translation. EVIDENCE LEVEL: N/A. TECHNICAL EFFICACY: Stage 1.

Exploring the Potential of Retrieval Augmented Generation for Question Answering in Radiology: Initial Findings and Future Directions.

Mou Y, Siepmann RM, Truhnn D, Sowe S, Decker S

pubmed logopapersMay 15 2025
This study explores the application of Retrieval-Augmented Generation (RAG) for question answering in radiology, an area where intelligent systems can significantly impact clinical decision-making. A preliminary experiment tested a naive RAG setup on nice radiology-specific questions with a textbook as the reference source, showing moderate improvements over baseline methods. The paper discusses lessons learned and potential enhancements for RAG in handling radiology knowledge, suggesting pathways for future research in integrating intelligent health systems in medical practice.

Using Foundation Models as Pseudo-Label Generators for Pre-Clinical 4D Cardiac CT Segmentation

Anne-Marie Rickmann, Stephanie L. Thorn, Shawn S. Ahn, Supum Lee, Selen Uman, Taras Lysyy, Rachel Burns, Nicole Guerrera, Francis G. Spinale, Jason A. Burdick, Albert J. Sinusas, James S. Duncan

arxiv logopreprintMay 14 2025
Cardiac image segmentation is an important step in many cardiac image analysis and modeling tasks such as motion tracking or simulations of cardiac mechanics. While deep learning has greatly advanced segmentation in clinical settings, there is limited work on pre-clinical imaging, notably in porcine models, which are often used due to their anatomical and physiological similarity to humans. However, differences between species create a domain shift that complicates direct model transfer from human to pig data. Recently, foundation models trained on large human datasets have shown promise for robust medical image segmentation; yet their applicability to porcine data remains largely unexplored. In this work, we investigate whether foundation models can generate sufficiently accurate pseudo-labels for pig cardiac CT and propose a simple self-training approach to iteratively refine these labels. Our method requires no manually annotated pig data, relying instead on iterative updates to improve segmentation quality. We demonstrate that this self-training process not only enhances segmentation accuracy but also smooths out temporal inconsistencies across consecutive frames. Although our results are encouraging, there remains room for improvement, for example by incorporating more sophisticated self-training strategies and by exploring additional foundation models and other cardiac imaging technologies.
Page 30 of 34338 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.