Automated MRI protocoling in neuroradiology in the era of large language models.
Reiner LN, Chelbi M, Fetscher L, Stöckel JC, Csapó-Schmidt C, Guseynova S, Al Mohamad F, Bressem KK, Nawabi J, Siebert E, Wattjes MP, Scheel M, Meddeb A
•papers•Jul 11 2025This study investigates the automation of MRI protocoling, a routine task in radiology, using large language models (LLMs), comparing an open-source (LLama 3.1 405B) and a proprietary model (GPT-4o) with and without retrieval-augmented generation (RAG), a method for incorporating domain-specific knowledge. This retrospective study included MRI studies conducted between January and December 2023, along with institution-specific protocol assignment guidelines. Clinical questions were extracted, and a neuroradiologist established the gold standard protocol. LLMs were tasked with assigning MRI protocols and contrast medium administration with and without RAG. The results were compared to protocols selected by four radiologists. Token-based symmetric accuracy, the Wilcoxon signed-rank test, and the McNemar test were used for evaluation. Data from 100 neuroradiology reports (mean age = 54.2 years ± 18.41, women 50%) were included. RAG integration significantly improved accuracy in sequence and contrast media prediction for LLama 3.1 (Sequences: 38% vs. 70%, P < .001, Contrast Media: 77% vs. 94%, P < .001), and GPT-4o (Sequences: 43% vs. 81%, P < .001, Contrast Media: 79% vs. 92%, P = .006). GPT-4o outperformed LLama 3.1 in MRI sequence prediction (81% vs. 70%, P < .001), with comparable accuracies to the radiologists (81% ± 0.21, P = .43). Both models equaled radiologists in predicting contrast media administration (LLama 3.1 RAG: 94% vs. 91% ± 0.2, P = .37, GPT-4o RAG: 92% vs. 91% ± 0.24, P = .48). Large language models show great potential as decision-support tools for MRI protocoling, with performance similar to radiologists. RAG enhances the ability of LLMs to provide accurate, institution-specific protocol recommendations.