Sort by:
Page 30 of 41408 results

Toward diffusion MRI in the diagnosis and treatment of pancreatic cancer.

Lee J, Lin T, He Y, Wu Y, Qin J

pubmed logopapersMay 28 2025
Pancreatic cancer is a highly aggressive malignancy with rising incidence and mortality rates, often diagnosed at advanced stages. Conventional imaging methods, such as computed tomography (CT) and magnetic resonance imaging (MRI), struggle to assess tumor characteristics and vascular involvement, which are crucial for treatment planning. This paper explores the potential of diffusion magnetic resonance imaging (dMRI) in enhancing pancreatic cancer diagnosis and treatment. Diffusion-based techniques, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI), combined with emerging AI‑powered analysis, provide insights into tissue microstructure, allowing for earlier detection and improved evaluation of tumor cellularity. These methods may help assess prognosis and monitor therapy response by tracking diffusion and perfusion metrics. However, challenges remain, such as standardized protocols and robust data analysis pipelines. Ongoing research, including deep learning applications, aims to improve reliability, and dMRI shows promise in providing functional insights and improving patient outcomes. Further clinical validation is necessary to maximize its benefits.

Incorporating organ deformation in biological modeling and patient outcome study for permanent prostate brachytherapy.

To S, Mavroidis P, Chen RC, Wang A, Royce T, Tan X, Zhu T, Lian J

pubmed logopapersMay 28 2025
Permanent prostate brachytherapy has inherent intraoperative organ deformation due to the inflatable trans-rectal ultrasound probe cover. Since the majority of the dose is delivered postoperatively with no deformation, the dosimetry approved at the time of implant may not accurately represent the dose delivered to the target and organs at risk. We aimed to evaluate the biological effect of the prostate deformation and its correlation with patient-reported outcomes. We prospectively acquired ultrasound images of the prostate pre- and postprobe cover inflation for 27 patients undergoing I-125 seed implant. The coordinates of implanted seeds from approved clinical plan were transferred to deformation-corrected prostate to simulate the actual dosimetry using a machine learning-based deformable image registration. The DVHs of both sets of plans were reduced to biologically effective dose (BED) distribution and subsequently to Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) metrics. The change in fourteen patient-reported rectal and urinary symptoms between pretreatment to 6 months post-op time points were correlated with the TCP and NTCP metrics using the area under the curve (AUC) and odds ratio (OR). Between the clinical and the deformation corrected research plans, the mean TCP decreased by 9.4% (p < 0.01), whereas mean NTCP of rectum decreased by 10.3% and that of urethra increased by 16.3%, respectively (p < 0.01). For the diarrhea symptom, the deformation corrected research plans showed AUC=0.75 and OR = 8.9 (1.3-58.8) for the threshold NTCP>20%, while the clinical plan showed AUC=0.56 and OR = 1.4 (0.2 to 9.0). For the symptom of urinary control, the deformation corrected research plans showed AUC = 0.70, OR = 6.9 (0.6 to 78.0) for the threshold of NTCP>15%, while the clinical plan showed AUC = 0.51 and no positive OR. Taking organ deformation into consideration, clinical brachytherapy plans showed worse tumor coverage, worse urethra sparing but better rectal sparing. The deformation corrected research plans showed a stronger correlation with the patient-reported outcome than the clinical plans for the symptoms of diarrhea and urinary control.

Contrast-Enhanced Ultrasound for Hepatocellular Carcinoma Diagnosis-<i>AJR</i> Expert Panel Narrative Review.

Li L, Burgio MD, Fetzer DT, Ferraioli G, Lyshchik A, Meloni MF, Rafailidis V, Sidhu PS, Vilgrain V, Wilson SR, Zhou J

pubmed logopapersMay 28 2025
Despite growing clinical use of contrast-enhanced ultrasound (CEUS), inconsistency remains in the modality's role in clinical pathways for hepatocellular carcinoma (HCC) diagnosis and management. This AJR Expert Panel Narrative Review provides practical insights on the use of CEUS for the diagnosis of HCC across populations, including individuals at high risk for HCC, individuals with metabolic dysfunction-associated steatotic liver disease, and remaining individuals not at high risk for HCC. Considerations addressed with respect to high-risk patients include CEUS diagnostic criteria for HCC, use of CEUS for differentiating HCC from non-HCC malignancy, use of CEUS for small (≤2 cm) lesions, use of CEUS for characterizing occult lesions on B-mode ultrasound, and use of CEUS for indeterminate lesions on CT or MRI. Representative literature addressing the use of CEUS for HCC diagnosis as well as gaps in knowledge requiring further investigation are highlighted. Throughout these discussions, the article distinguishes two broad types of ultrasound contrast agents used for liver imaging: pure blood-pool agents and a combined blood-pool and Kupffer-cell agent. Additional topics include the use of CEUS for treatment response assessment after nonradiation therapies and implications of artificial intelligence technologies. The article concludes with a series of consensus statements from the author panel.

Large Scale MRI Collection and Segmentation of Cirrhotic Liver.

Jha D, Susladkar OK, Gorade V, Keles E, Antalek M, Seyithanoglu D, Cebeci T, Aktas HE, Kartal GD, Kaymakoglu S, Erturk SM, Velichko Y, Ladner DP, Borhani AA, Medetalibeyoglu A, Durak G, Bagci U

pubmed logopapersMay 28 2025
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.

PlaNet-S: an Automatic Semantic Segmentation Model for Placenta Using U-Net and SegNeXt.

Saito I, Yamamoto S, Takaya E, Harigai A, Sato T, Kobayashi T, Takase K, Ueda T

pubmed logopapersMay 27 2025
This study aimed to develop a fully automated semantic placenta segmentation model that integrates the U-Net and SegNeXt architectures through ensemble learning. A total of 218 pregnant women with suspected placental abnormalities who underwent magnetic resonance imaging (MRI) were enrolled, yielding 1090 annotated images for developing a deep learning model for placental segmentation. The images were standardized and divided into training and test sets. The performance of Placental Segmentation Network (PlaNet-S), which integrates U-Net and SegNeXt within an ensemble framework, was assessed using Intersection over Union (IoU) and counting connected components (CCC) against the U-Net, U-Net + + , and DS-transUNet. PlaNet-S had significantly higher IoU (0.78, SD = 0.10) than that of U-Net (0.73, SD = 0.13) (p < 0.005) and DS-transUNet (0.64, SD = 0.16) (p < 0.005), while the difference with U-Net + + (0.77, SD = 0.12) was not statistically significant. The CCC for PlaNet-S was significantly higher than that for U-Net (p < 0.005), U-Net + + (p < 0.005), and DS-transUNet (p < 0.005), matching the ground truth in 86.0%, 56.7%, 67.9%, and 20.9% of the cases, respectively. PlaNet-S achieved higher IoU than U-Net and DS-transUNet, and comparable IoU to U-Net + + . Moreover, PlaNet-S significantly outperformed all three models in CCC, indicating better agreement with the ground truth. This model addresses the challenges of time-consuming physician-assisted manual segmentation and offers the potential for diverse applications in placental imaging analyses.

Deep learning network enhances imaging quality of low-b-value diffusion-weighted imaging and improves lesion detection in prostate cancer.

Liu Z, Gu WJ, Wan FN, Chen ZZ, Kong YY, Liu XH, Ye DW, Dai B

pubmed logopapersMay 27 2025
Diffusion-weighted imaging with higher b-value improves detection rate for prostate cancer lesions. However, obtaining high b-value DWI requires more advanced hardware and software configuration. Here we use a novel deep learning network, NAFNet, to generate a deep learning reconstructed (DLR<sub>1500</sub>) images from 800 b-value to mimic 1500 b-value images, and to evaluate its performance and lesion detection improvements based on whole-slide images (WSI). We enrolled 303 prostate cancer patients with both 800 and 1500 b-values from Fudan University Shanghai Cancer Centre between 2017 and 2020. We assigned these patients to the training and validation set in a 2:1 ratio. The testing set included 36 prostate cancer patients from an independent institute who had only preoperative DWI at 800 b-value. Two senior radiology doctors and two junior radiology doctors read and delineated cancer lesions on DLR<sub>1500</sub>, original 800 and 1500 b-values DWI images. WSI were used as the ground truth to assess the lesion detection improvement of DLR<sub>1500</sub> images in the testing set. After training and generating, within junior radiology doctors, the diagnostic AUC based on DLR<sub>1500</sub> images is not inferior to that based on 1500 b-value images (0.832 (0.788-0.876) vs. 0.821 (0.747-0.899), P = 0.824). The same phenomenon is also observed in senior radiology doctors. Furthermore, in the testing set, DLR<sub>1500</sub> images could significantly enhance junior radiology doctors' diagnostic performance than 800 b-value images (0.848 (0.758-0.938) vs. 0.752 (0.661-0.843), P = 0.043). DLR<sub>1500</sub> DWIs were comparable in quality to original 1500 b-value images within both junior and senior radiology doctors. NAFNet based DWI enhancement can significantly improve the image quality of 800 b-value DWI, and therefore promote the accuracy of prostate cancer lesion detection for junior radiology doctors.

Dose calculation in nuclear medicine with magnetic resonance imaging images using Monte Carlo method.

Vu LH, Thao NTP, Trung NT, Hau PVT, Hong Loan TT

pubmed logopapersMay 27 2025
In recent years, scientists have been trying to convert magnetic resonance imaging (MRI) images into computed tomography (CT) images for dose calculations while taking advantage of the benefits of MRI images. The main approaches for image conversion are bulk density, Atlas registration, and machine learning. These methods have limitations in accuracy and time consumption and require large datasets to convert images. In this study, the novel 'voxels spawn voxels' technique combined with the 'orthonormalize' feature in Carimas software was developed to build a conversion dataset from MRI intensity to Hounsfield unit value for some structural regions including gluteus maximus, liver, kidneys, spleen, pancreas, and colon. The original CT images and the converted MRI images were imported into the Geant4/Gamos software for dose calculation. It gives good results (<5%) in most organs except the intestine (18%).

Automated Body Composition Analysis Using DAFS Express on 2D MRI Slices at L3 Vertebral Level.

Akella V, Bagherinasab R, Lee H, Li JM, Nguyen L, Salehin M, Chow VTY, Popuri K, Beg MF

pubmed logopapersMay 27 2025
Body composition analysis is vital in assessing health conditions such as obesity, sarcopenia, and metabolic syndromes. MRI provides detailed images of skeletal muscle (SM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), but their manual segmentation is labor-intensive and limits clinical applicability. This study validates an automated tool for MRI-based 2D body composition analysis (Data Analysis Facilitation Suite (DAFS) Express), comparing its automated measurements with expert manual segmentations using UK Biobank data. A cohort of 399 participants from the UK Biobank dataset was selected, yielding 423 single L3 slices for analysis. DAFS Express performed automated segmentations of SM, VAT, and SAT, which were then manually corrected by expert raters for validation. Evaluation metrics included Jaccard coefficients, Dice scores, intraclass correlation coefficients (ICCs), and Bland-Altman Plots to assess segmentation agreement and reliability. High agreements were observed between automated and manual segmentations with mean Jaccard scores: SM 99.03%, VAT 95.25%, and SAT 99.57%, and mean Dice scores: SM 99.51%, VAT 97.41%, and SAT 99.78%. Cross-sectional area comparisons showed consistent measurements, with automated methods closely matching manual measurements for SM and SAT, and slightly higher values for VAT (SM: auto 132.51 cm<sup>2</sup>, manual 132.36 cm<sup>2</sup>; VAT: auto 137.07 cm<sup>2</sup>, manual 134.46 cm<sup>2</sup>; SAT: auto 203.39 cm<sup>2</sup>, manual 202.85 cm<sup>2</sup>). ICCs confirmed strong reliability (SM 0.998, VAT 0.994, SAT 0.994). Bland-Altman plots revealed minimal biases, and boxplots illustrated distribution similarities across SM, VAT, and SAT areas. On average, DAFS Express took 18 s per DICOM for a total of 126.9 min for 423 images to output segmentations and measurement PDF's per DICOM. Automated segmentation of SM, VAT, and SAT from 2D MRI images using DAFS Express showed comparable accuracy to manual segmentation. This underscores its potential to streamline image analysis processes in research and clinical settings, enhancing diagnostic accuracy and efficiency. Future work should focus on further validation across diverse clinical applications and imaging conditions.

Dual-energy CT combined with histogram parameters in the assessment of perineural invasion in colorectal cancer.

Wang Y, Tan H, Li S, Long C, Zhou B, Wang Z, Cao Y

pubmed logopapersMay 27 2025
The purpose is to evaluate the predictive value of dual-energy CT (DECT) combined with histogram parameters and a clinical prediction model for perineural invasion (PNI) in colorectal cancer (CRC). We retrospectively analyzed clinical and imaging data from 173 CRC patients who underwent preoperative DECT-enhanced scanning at two centers. Data from Qinghai University Affiliated Hospital (n = 120) were randomly divided into training and validation sets, while data from Lanzhou University Second Hospital (n = 53) served as the external validation set. Regions of interest (ROIs) were delineated to extract spectral and histogram parameters, and multivariate logistic regression identified optimal predictors. Six machine learning models-support vector machine (SVM), decision tree (DT), random forest (RF), logistic regression (LR), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost)-were constructed. Model performance and clinical utility were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Four independent predictive factors were identified through multivariate analysis: entropy, CT40<sub>KeV</sub>, CEA, and skewness. Among the six classifier models, RF model demonstrated the best performance in the training set (AUC = 0.918, 95% CI: 0.862-0.969). In the validation set, RF outperformed other models (AUC = 0.885, 95% CI: 0.772-0.972). Notably, in the external validation set, the XGBoost model achieved the highest performance (AUC = 0.823, 95% CI: 0.672-0.945). Dual-energy CT-based combined with histogram parameters and clinical prediction modeling can be effectively used for preoperative noninvasive assessment of perineural invasion in colorectal cancer.

ToPoMesh: accurate 3D surface reconstruction from CT volumetric data via topology modification.

Chen J, Zhu Q, Xie B, Li T

pubmed logopapersMay 27 2025
Traditional computed tomography (CT) methods for 3D reconstruction face resolution limitations and require time-consuming post-processing workflows. While deep learning techniques improve the accuracy of segmentation, traditional voxel-based segmentation and surface reconstruction pipelines tend to introduce artifacts such as disconnected regions, topological inconsistencies, and stepped distortions. To overcome these challenges, we propose ToPoMesh, an end-to-end 3D mesh reconstruction deep learning framework for direct reconstruction of high-fidelity surface meshes from CT volume data. To address the existing problems, our approach introduces three core innovations: (1) accurate local and global shape modeling by preserving and enhancing local feature information through residual connectivity and self-attention mechanisms in graph convolutional networks; (2) an adaptive variant density (Avd) mesh de-pooling strategy, which dynamically optimizes the vertex distribution; (3) a topology modification module that iteratively prunes the error surfaces and boundary smoothing via variable regularity terms to obtain finer mesh surfaces. Experiments on the LiTS, MSD pancreas tumor, MSD hippocampus, and MSD spleen datasets demonstrate that ToPoMesh outperforms state-of-the-art methods. Quantitative evaluations demonstrate a 57.4% reduction in Chamfer distance (liver) and a 0.47% improvement in F-score compared to end-to-end 3D reconstruction methods, while qualitative results confirm enhanced fidelity for thin structures and complex anatomical topologies versus segmentation frameworks. Importantly, our method eliminates the need for manual post-processing, realizes the ability to reconstruct 3D meshes from images, and can provide precise guidance for surgical planning and diagnosis.
Page 30 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.