Sort by:
Page 3 of 34338 results

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence.

Zhao B, Cao B, Xia T, Zhu L, Yu Y, Lu C, Tang T, Wang Y, Ju S

pubmed logopapersJul 1 2025
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high-throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI-enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI-based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi-omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI-enabled image biomarkers and bring these biomarkers closer to clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 4.

VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation

Peng Huang, Junhu Fu, Bowen Guo, Zeju Li, Yuanyuan Wang, Yi Guo

arxiv logopreprintJun 30 2025
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.

Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation

Fangyijie Wang, Kevin Whelan, Félix Balado, Guénolé Silvestre, Kathleen M. Curran

arxiv logopreprintJun 30 2025
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.

Federated Breast Cancer Detection Enhanced by Synthetic Ultrasound Image Augmentation

Hongyi Pan, Ziliang Hong, Gorkem Durak, Ziyue Xu, Ulas Bagci

arxiv logopreprintJun 29 2025
Federated learning (FL) has emerged as a promising paradigm for collaboratively training deep learning models across institutions without exchanging sensitive medical data. However, its effectiveness is often hindered by limited data availability and non-independent, identically distributed data across participating clients, which can degrade model performance and generalization. To address these challenges, we propose a generative AI based data augmentation framework that integrates synthetic image sharing into the federated training process for breast cancer diagnosis via ultrasound images. Specifically, we train two simple class-specific Deep Convolutional Generative Adversarial Networks: one for benign and one for malignant lesions. We then simulate a realistic FL setting using three publicly available breast ultrasound image datasets: BUSI, BUS-BRA, and UDIAT. FedAvg and FedProx are adopted as baseline FL algorithms. Experimental results show that incorporating a suitable number of synthetic images improved the average AUC from 0.9206 to 0.9237 for FedAvg and from 0.9429 to 0.9538 for FedProx. We also note that excessive use of synthetic data reduced performance, underscoring the importance of maintaining a balanced ratio of real and synthetic samples. Our findings highlight the potential of generative AI based data augmentation to enhance FL results in the breast ultrasound image classification task.

MedRegion-CT: Region-Focused Multimodal LLM for Comprehensive 3D CT Report Generation

Sunggu Kyung, Jinyoung Seo, Hyunseok Lim, Dongyeong Kim, Hyungbin Park, Jimin Sung, Jihyun Kim, Wooyoung Jo, Yoojin Nam, Namkug Kim

arxiv logopreprintJun 29 2025
The recent release of RadGenome-Chest CT has significantly advanced CT-based report generation. However, existing methods primarily focus on global features, making it challenging to capture region-specific details, which may cause certain abnormalities to go unnoticed. To address this, we propose MedRegion-CT, a region-focused Multi-Modal Large Language Model (MLLM) framework, featuring three key innovations. First, we introduce Region Representative ($R^2$) Token Pooling, which utilizes a 2D-wise pretrained vision model to efficiently extract 3D CT features. This approach generates global tokens representing overall slice features and region tokens highlighting target areas, enabling the MLLM to process comprehensive information effectively. Second, a universal segmentation model generates pseudo-masks, which are then processed by a mask encoder to extract region-centric features. This allows the MLLM to focus on clinically relevant regions, using six predefined region masks. Third, we leverage segmentation results to extract patient-specific attributions, including organ size, diameter, and locations. These are converted into text prompts, enriching the MLLM's understanding of patient-specific contexts. To ensure rigorous evaluation, we conducted benchmark experiments on report generation using the RadGenome-Chest CT. MedRegion-CT achieved state-of-the-art performance, outperforming existing methods in natural language generation quality and clinical relevance while maintaining interpretability. The code for our framework is publicly available.

Improving radiology reporting accuracy: use of GPT-4 to reduce errors in reports.

Mayes CJ, Reyes C, Truman ME, Dodoo CA, Adler CR, Banerjee I, Khandelwal A, Alexander LF, Sheedy SP, Thompson CP, Varner JA, Zulfiqar M, Tan N

pubmed logopapersJun 27 2025
Radiology reports are essential for communicating imaging findings to guide diagnosis and treatment. Although most radiology reports are accurate, errors can occur in the final reports due to high workloads, use of dictation software, and human error. Advanced artificial intelligence models, such as GPT-4, show potential as tools to improve report accuracy. This retrospective study evaluated how GPT-4 performed in detecting and correcting errors in finalized radiology reports in real-world settings for abdominopelvic computed tomography (CT) reports. We evaluated finalized CT abdominopelvic reports from a tertiary health system by using GPT-4 with zero-shot learning techniques. Six radiologists each reviewed 100 of their finalized reports (randomly selected), evaluating GPT-4's suggested revisions for agreement, acceptance, and clinical impact. The radiologists' responses were compared by years in practice and sex. GPT-4 identified issues and suggested revisions for 91% of the 600 reports; most revisions addressed grammar (74%). The radiologists agreed with 27% of the revisions and accepted 23%. Most revisions were rated as having no (44%) or low (46%) clinical impact. Potential harm was rare (8%), with only 2 cases of potentially severe harm. Radiologists with less experience (≤ 7 years of practice) were more likely to agree with the revisions suggested by GPT-4 than those with more experience (34% vs. 20%, P = .003) and accepted a greater percentage of the revisions (32% vs. 15%, P = .003). Although GPT-4 showed promise in identifying errors and improving the clarity of finalized radiology reports, most errors were categorized as minor, with no or low clinical impact. Collectively, the radiologists accepted 23% of the suggested revisions in their finalized reports. This study highlights the potential of GPT-4 as a prospective tool for radiology reporting, with further refinement needed for consistent use in clinical practice.

Association of Covert Cerebrovascular Disease With Falls Requiring Medical Attention.

Clancy Ú, Puttock EJ, Chen W, Whiteley W, Vickery EM, Leung LY, Luetmer PH, Kallmes DF, Fu S, Zheng C, Liu H, Kent DM

pubmed logopapersJun 27 2025
The impact of covert cerebrovascular disease on falls in the general population is not well-known. Here, we determine the time to a first fall following incidentally detected covert cerebrovascular disease during a clinical neuroimaging episode. This longitudinal cohort study assessed computed tomography (CT) and magnetic resonance imaging from 2009 to 2019 of patients aged >50 years registered with Kaiser Permanente Southern California which is a healthcare organization combining health plan coverage with coordinated medical services, excluding those with before stroke/dementia. We extracted evidence of incidental covert brain infarcts (CBI) and white matter hyperintensities/hypoattenuation (WMH) from imaging reports using natural language processing. We examined associations of CBI and WMH with falls requiring medical attention, using Cox proportional hazards regression models with adjustment for 12 variables including age, sex, ethnicity multimorbidity, polypharmacy, and incontinence. We assessed 241 050 patients, mean age 64.9 (SD, 10.42) years, 61.3% female, detecting covert cerebrovascular disease in 31.1% over a mean follow-up duration of 3.04 years. A recorded fall occurred in 21.2% (51 239/241 050) during follow-up. On CT, single fall incidence rate/1000 person-years (p-y) was highest in individuals with both CBI and WMH on CT (129.3 falls/1000 p-y [95% CI, 123.4-135.5]), followed by WMH (109.9 falls/1000 p-y [108.0-111.9]). On magnetic resonance imaging, the incidence rate was the highest with both CBI and WMH (76.3 falls/1000 p-y [95% CI, 69.7-83.2]), followed by CBI (71.4 falls/1000 p-y [95% CI, 65.9-77.2]). The adjusted hazard ratio for single index fall in individuals with CBI on CT was 1.13 (95% CI, 1.09-1.17); versus magnetic resonance imaging 1.17 (95% CI, 1.08-1.27). On CT, the risk for single index fall incrementally increased for mild (1.37 [95% CI, 1.32-1.43]), moderate (1.57 [95% CI, 1.48-1.67]), or severe WMH (1.57 [95% CI, 1.45-1.70]). On magnetic resonance imaging, index fall risk similarly increased with increasing WMH severity: mild (1.11 [95% CI, 1.07-1.17]), moderate (1.21 [95% CI, 1.13-1.28]), and severe WMH (1.34 [95% CI, 1.22-1.46]). In a large population with neuroimaging, CBI and WMH are independently associated with greater risks of an index fall. Increasing severities of WMH are associated incrementally with fall risk across imaging modalities.

Self-supervised learning for MRI reconstruction: a review and new perspective.

Li X, Huang J, Sun G, Yang Z

pubmed logopapersJun 26 2025
To review the latest developments in self-supervised deep learning (DL) techniques for magnetic resonance imaging (MRI) reconstruction, emphasizing their potential to overcome the limitations of supervised methods dependent on fully sampled k-space data. While DL has significantly advanced MRI, supervised approaches require large amounts of fully sampled k-space data for training-a major limitation given the impracticality and expense of acquiring such data clinically. Self-supervised learning has emerged as a promising alternative, enabling model training using only undersampled k-space data, thereby enhancing feasibility and driving research interest. We conducted a comprehensive literature review to synthesize recent progress in self-supervised DL for MRI reconstruction. The analysis focused on methods and architectures designed to improve image quality, reduce scanning time, and address data scarcity challenges, drawing from peer-reviewed publications and technical innovations in the field. Self-supervised DL holds transformative potential for MRI reconstruction, offering solutions to data limitations while maintaining image quality and accelerating scans. Key challenges include robustness across diverse anatomies, standardization of validation, and clinical integration. Future research should prioritize hybrid methodologies, domain-specific adaptations, and rigorous clinical validation. This review consolidates advancements and unresolved issues, providing a foundation for next-generation medical imaging technologies.

MedPrompt: LLM-CNN Fusion with Weight Routing for Medical Image Segmentation and Classification

Shadman Sobhan, Kazi Abrar Mahmud, Abduz Zami

arxiv logopreprintJun 26 2025
Current medical image analysis systems are typically task-specific, requiring separate models for classification and segmentation, and lack the flexibility to support user-defined workflows. To address these challenges, we introduce MedPrompt, a unified framework that combines a few-shot prompted Large Language Model (Llama-4-17B) for high-level task planning with a modular Convolutional Neural Network (DeepFusionLab) for low-level image processing. The LLM interprets user instructions and generates structured output to dynamically route task-specific pretrained weights. This weight routing approach avoids retraining the entire framework when adding new tasks-only task-specific weights are required, enhancing scalability and deployment. We evaluated MedPrompt across 19 public datasets, covering 12 tasks spanning 5 imaging modalities. The system achieves a 97% end-to-end correctness in interpreting and executing prompt-driven instructions, with an average inference latency of 2.5 seconds, making it suitable for near real-time applications. DeepFusionLab achieves competitive segmentation accuracy (e.g., Dice 0.9856 on lungs) and strong classification performance (F1 0.9744 on tuberculosis). Overall, MedPrompt enables scalable, prompt-driven medical imaging by combining the interpretability of LLMs with the efficiency of modular CNNs.

Harnessing Generative AI for Lung Nodule Spiculation Characterization.

Wang Y, Patel C, Tchoua R, Furst J, Raicu D

pubmed logopapersJun 26 2025
Spiculation, characterized by irregular, spike-like projections from nodule margins, serves as a crucial radiological biomarker for malignancy assessment and early cancer detection. These distinctive stellate patterns strongly correlate with tumor invasiveness and are vital for accurate diagnosis and treatment planning. Traditional computer-aided diagnosis (CAD) systems are limited in their capability to capture and use these patterns given their subtlety, difficulty in quantifying them, and small datasets available to learn these patterns. To address these challenges, we propose a novel framework leveraging variational autoencoders (VAE) to discover, extract, and vary disentangled latent representations of lung nodule images. By gradually varying the latent representations of non-spiculated nodule images, we generate augmented datasets containing spiculated nodule variations that, we hypothesize, can improve the diagnostic classification of lung nodules. Using the National Institutes of Health/National Cancer Institute Lung Image Database Consortium (LIDC) dataset, our results show that incorporating these spiculated image variations into the classification pipeline significantly improves spiculation detection performance up to 7.53%. Notably, this enhancement in spiculation detection is achieved while preserving the classification performance of non-spiculated cases. This approach effectively addresses class imbalance and enhances overall classification outcomes. The gradual attenuation of spiculation characteristics demonstrates our model's ability to both capture and generate clinically relevant semantic features in an algorithmic manner. These findings suggest that the integration of semantic-based latent representations into CAD models not only enhances diagnostic accuracy but also provides insights into the underlying morphological progression of spiculated nodules, enabling more informed and clinically meaningful AI-driven support systems.
Page 3 of 34338 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.