Sort by:
Page 299 of 3343333 results

Intracranial hemorrhage segmentation and classification framework in computer tomography images using deep learning techniques.

Ahmed SN, Prakasam P

pubmed logopapersMay 17 2025
By helping the neurosurgeon create treatment strategies that increase the survival rate, automotive diagnosis and CT (Computed Tomography) hemorrhage segmentation (CT) could be beneficial. Owing to the significance of medical image segmentation and the difficulties in carrying out human operations, a wide variety of automated techniques for this purpose have been developed, with a primary focus on particular image modalities. In this paper, MUNet (Multiclass-UNet) based Intracranial Hemorrhage Segmentation and Classification Framework (IHSNet) is proposed to successfully segment multiple kinds of hemorrhages while the fully connected layers help in classifying the type of hemorrhages.The segmentation accuracy rates for hemorrhages are 98.53% with classification accuracy stands at 98.71% when using the suggested approach. There is potential for this suggested approach to be expanded in the future to handle further medical picture segmentation issues. Intraventricular hemorrhage (IVH), Epidural hemorrhage (EDH), Intraparenchymal hemorrhage (IPH), Subdural hemorrhage (SDH), Subarachnoid hemorrhage (SAH) are the subtypes involved in intracranial hemorrhage (ICH) whose DICE coefficients are 0.77, 0.84, 0.64, 0.80, and 0.92 respectively.The proposed method has great deal of clinical application potential for computer-aided diagnostics, which can be expanded in the future to handle further medical picture segmentation and to tackle with the involved issues.

Brain metabolic imaging-based model identifies cognitive stability in prodromal Alzheimer's disease.

Perron J, Scramstad C, Ko JH

pubmed logopapersMay 17 2025
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for incipient cognitive decline, since patients with mild cognitive impairment (MCI) may remain stable for several years even with positive AD biomarkers. Using fluorodeoxyglucose PET and biomarker data from 594 ADNI patients, a neural network ensemble was trained to forecast cognition from MCI diagnostic baseline. Training data comprised PET studies of patients with biological AD. The ensemble discriminated between progressive and stable prodromal subjects (MCI with positive amyloid and tau) at baseline with 88.6% area-under-curve, 88.6% (39/44) accuracy, 73.7% (14/19) sensitivity and 100% (25/25) specificity in the test set. It also correctly classified all other test subjects (healthy or AD continuum subjects across the cognitive spectrum) with 86.4% accuracy (206/239), 77.4% sensitivity (33/42) and 88.23% (165/197) specificity. By identifying patients with prodromal AD who will not progress to dementia, our model could significantly reduce overall societal burden and cost if implemented as a screening tool. The model's high positive predictive value in the prodromal test set makes it a practical means for selecting candidates for anti-amyloid therapy and trials.

An integrated deep learning model for early and multi-class diagnosis of Alzheimer's disease from MRI scans.

Vinukonda ER, Jagadesh BN

pubmed logopapersMay 17 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely affects memory, behavior, and cognitive function. Early and accurate diagnosis is crucial for effective intervention, yet detecting subtle changes in the early stages remains a challenge. In this study, we propose a hybrid deep learning-based multi-class classification system for AD using magnetic resonance imaging (MRI). The proposed approach integrates an improved DeepLabV3+ (IDeepLabV3+) model for lesion segmentation, followed by feature extraction using the LeNet-5 model. A novel feature selection method based on average correlation and error probability is employed to enhance classification efficiency. Finally, an Enhanced ResNext (EResNext) model is used to classify AD into four stages: non-dementia (ND), very mild dementia (VMD), mild dementia (MD), and moderate dementia (MOD). The proposed model achieves an accuracy of 98.12%, demonstrating its superior performance over existing methods. The area under the ROC curve (AUC) further validates its effectiveness, with the highest score of 0.97 for moderate dementia. This study highlights the potential of hybrid deep learning models in improving early AD detection and staging, contributing to more accurate clinical diagnosis and better patient care.

A self-supervised multimodal deep learning approach to differentiate post-radiotherapy progression from pseudoprogression in glioblastoma.

Gomaa A, Huang Y, Stephan P, Breininger K, Frey B, Dörfler A, Schnell O, Delev D, Coras R, Donaubauer AJ, Schmitter C, Stritzelberger J, Semrau S, Maier A, Bayer S, Schönecker S, Heiland DH, Hau P, Gaipl US, Bert C, Fietkau R, Schmidt MA, Putz F

pubmed logopapersMay 17 2025
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due to the overlapping imaging characteristics of PsP and TP. This study therefore proposes a multimodal deep-learning approach utilizing complementary information from routine anatomical MR images, clinical parameters, and RT treatment planning information for improved predictive accuracy. The approach utilizes a self-supervised Vision Transformer (ViT) to encode multi-sequence MR brain volumes to effectively capture both global and local context from the high dimensional input. The encoder is trained in a self-supervised upstream task on unlabeled glioma MRI datasets from the open BraTS2021, UPenn-GBM, and UCSF-PDGM datasets (n = 2317 MRI studies) to generate compact, clinically relevant representations from FLAIR and T1 post-contrast sequences. These encoded MR inputs are then integrated with clinical data and RT treatment planning information through guided cross-modal attention, improving progression classification accuracy. This work was developed using two datasets from different centers: the Burdenko Glioblastoma Progression Dataset (n = 59) for training and validation, and the GlioCMV progression dataset from the University Hospital Erlangen (UKER) (n = 20) for testing. The proposed method achieved competitive performance, with an AUC of 75.3%, outperforming the current state-of-the-art data-driven approaches. Importantly, the proposed approach relies solely on readily available anatomical MRI sequences, clinical data, and RT treatment planning information, enhancing its clinical feasibility. The proposed approach addresses the challenge of limited data availability for PsP and TP differentiation and could allow for improved clinical decision-making and optimized treatment plans for glioblastoma patients.

Exploring interpretable echo analysis using self-supervised parcels.

Majchrowska S, Hildeman A, Mokhtari R, Diethe T, Teare P

pubmed logopapersMay 17 2025
The application of AI for predicting critical heart failure endpoints using echocardiography is a promising avenue to improve patient care and treatment planning. However, fully supervised training of deep learning models in medical imaging requires a substantial amount of labelled data, posing significant challenges due to the need for skilled medical professionals to annotate image sequences. Our study addresses this limitation by exploring the potential of self-supervised learning, emphasising interpretability, robustness, and safety as crucial factors in cardiac imaging analysis. We leverage self-supervised learning on a large unlabelled dataset, facilitating the discovery of features applicable to a various downstream tasks. The backbone model not only generates informative features for training smaller models using simple techniques but also produces features that are interpretable by humans. The study employs a modified Self-supervised Transformer with Energy-based Graph Optimisation (STEGO) network on top of self-DIstillation with NO labels (DINO) as a backbone model, pre-trained on diverse medical and non-medical data. This approach facilitates the generation of self-segmented outputs, termed "parcels", which identify distinct anatomical sub-regions of the heart. Our findings highlight the robustness of these self-learned parcels across diverse patient profiles and phases of the cardiac cycle phases. Moreover, these parcels offer high interpretability and effectively encapsulate clinically relevant cardiac substructures. We conduct a comprehensive evaluation of the proposed self-supervised approach on publicly available datasets, demonstrating its adaptability to a wide range of requirements. Our results underscore the potential of self-supervised learning to address labelled data scarcity in medical imaging, offering a path to improve cardiac imaging analysis and enhance the efficiency and interpretability of diagnostic procedures, thus positively impacting patient care and clinical decision-making.

Evaluating the Performance of Reasoning Large Language Models on Japanese Radiology Board Examination Questions.

Nakaura T, Takamure H, Kobayashi N, Shiraishi K, Yoshida N, Nagayama Y, Uetani H, Kidoh M, Funama Y, Hirai T

pubmed logopapersMay 17 2025
This study evaluates the performance, cost, and processing time of OpenAI's reasoning large language models (LLMs) (o1-preview, o1-mini) and their base models (GPT-4o, GPT-4o-mini) on Japanese radiology board examination questions. A total of 210 questions from the 2022-2023 official board examinations of the Japan Radiological Society were presented to each of the four LLMs. Performance was evaluated by calculating the percentage of correctly answered questions within six predefined radiology subspecialties. The total cost and processing time for each model were also recorded. The McNemar test was used to assess the statistical significance of differences in accuracy between paired model responses. The o1-preview achieved the highest accuracy (85.7%), significantly outperforming GPT-4o (73.3%, P<.001). Similarly, o1-mini (69.5%) performed significantly better than GPT-4o-mini (46.7%, P<.001). Across all radiology subspecialties, o1-preview consistently ranked highest. However, reasoning models incurred substantially higher costs (o1-preview: $17.10, o1-mini: $2.58) compared to their base counterparts (GPT-4o: $0.496, GPT-4o-mini: $0.04), and their processing times were approximately 3.7 and 1.2 times longer, respectively. Reasoning LLMs demonstrated markedly superior performance in answering radiology board exam questions compared to their base models, albeit at a substantially higher cost and increased processing time.

MedVKAN: Efficient Feature Extraction with Mamba and KAN for Medical Image Segmentation

Hancan Zhu, Jinhao Chen, Guanghua He

arxiv logopreprintMay 17 2025
Medical image segmentation relies heavily on convolutional neural networks (CNNs) and Transformer-based models. However, CNNs are constrained by limited receptive fields, while Transformers suffer from scalability challenges due to their quadratic computational complexity. To address these limitations, recent advances have explored alternative architectures. The state-space model Mamba offers near-linear complexity while capturing long-range dependencies, and the Kolmogorov-Arnold Network (KAN) enhances nonlinear expressiveness by replacing fixed activation functions with learnable ones. Building on these strengths, we propose MedVKAN, an efficient feature extraction model integrating Mamba and KAN. Specifically, we introduce the EFC-KAN module, which enhances KAN with convolutional operations to improve local pixel interaction. We further design the VKAN module, integrating Mamba with EFC-KAN as a replacement for Transformer modules, significantly improving feature extraction. Extensive experiments on five public medical image segmentation datasets show that MedVKAN achieves state-of-the-art performance on four datasets and ranks second on the remaining one. These results validate the potential of Mamba and KAN for medical image segmentation while introducing an innovative and computationally efficient feature extraction framework. The code is available at: https://github.com/beginner-cjh/MedVKAN.

Fully Automated Evaluation of Condylar Remodeling after Orthognathic Surgery in Skeletal Class II Patients Using Deep Learning and Landmarks.

Jia W, Wu H, Mei L, Wu J, Wang M, Cui Z

pubmed logopapersMay 17 2025
Condylar remodeling is a key prognostic indicator in maxillofacial surgery for skeletal class II patients. This study aimed to develop and validate a fully automated method leveraging landmark-guided segmentation and registration for efficient assessment of condylar remodeling. A V-Net-based deep learning workflow was developed to automatically segment the mandible and localize anatomical landmarks from CT images. Cutting planes were computed based on the landmarks to segment the condylar and ramus volumes from the mandible mask. The stable ramus served as a reference for registering pre- and post-operative condyles using the Iterative Closest Point (ICP) algorithm. Condylar remodeling was subsequently assessed through mesh registration, heatmap visualization, and quantitative metrics of surface distance and volumetric change. Experts also rated the concordance between automated assessments and clinical diagnoses. In the test set, condylar segmentation achieved a Dice coefficient of 0.98, and landmark prediction yielded a mean absolute error of 0.26 mm. The automated evaluation process was completed in 5.22 seconds, approximately 150 times faster than manual assessments. The method accurately quantified condylar volume changes, ranging from 2.74% to 50.67% across patients. Expert ratings for all test cases averaged 9.62. This study introduced a consistent, accurate, and fully automated approach for condylar remodeling evaluation. The well-defined anatomical landmarks guided precise segmentation and registration, while deep learning supported an end-to-end automated workflow. The test results demonstrated its broad clinical applicability across various degrees of condylar remodeling and high concordance with expert assessments. By integrating anatomical landmarks and deep learning, the proposed method improves efficiency by 150 times without compromising accuracy, thereby facilitating an efficient and accurate assessment of orthognathic prognosis. The personalized 3D condylar remodeling models aid in visualizing sequelae, such as joint pain or skeletal relapse, and guide individualized management of TMJ disorders.

A Robust Automated Segmentation Method for White Matter Hyperintensity of Vascular-origin.

He H, Jiang J, Peng S, He C, Sun T, Fan F, Song H, Sun D, Xu Z, Wu S, Lu D, Zhang J

pubmed logopapersMay 17 2025
White matter hyperintensity (WMH) is a primary manifestation of small vessel disease (SVD), leading to vascular cognitive impairment and other disorders. Accurate WMH quantification is vital for diagnosis and prognosis, but current automatic segmentation methods often fall short, especially across different datasets. The aims of this study are to develop and validate a robust deep learning segmentation method for WMH of vascular-origin. In this study, we developed a transformer-based method for the automatic segmentation of vascular-origin WMH using both 3D T1 and 3D T2-FLAIR images. Our initial dataset comprised 126 participants with varying WMH burdens due to SVD, each with manually segmented WMH masks used for training and testing. External validation was performed on two independent datasets: the WMH Segmentation Challenge 2017 dataset (170 subjects) and an in-house vascular risk factor dataset (70 subjects), which included scans acquired on eight different MRI systems at field strengths of 1.5T, 3T, and 5T. This approach enabled a comprehensive assessment of the method's generalizability across diverse imaging conditions. We further compared our method against LGA, LPA, BIANCA, UBO-detector and TrUE-Net in optimized settings. Our method consistently outperformed others, achieving a median Dice coefficient of 0.78±0.09 in our primary dataset, 0.72±0.15 in the external dataset 1, and 0.72±0.14 in the external dataset 2. The relative volume errors were 0.15±0.14, 0.50±0.86, and 0.47±1.02, respectively. The true positive rates were 0.81±0.13, 0.92±0.09, and 0.92±0.12, while the false positive rates were 0.20±0.09, 0.40±0.18, and 0.40±0.19. None of the external validation datasets were used for model training; instead, they comprise previously unseen MRI scans acquired from different scanners and protocols. This setup closely reflects real-world clinical scenarios and further demonstrates the robustness and generalizability of our model across diverse MRI systems and acquisition settings. As such, the proposed method provides a reliable solution for WMH segmentation in large-scale cohort studies.

ML-Driven Alzheimer 's disease prediction: A deep ensemble modeling approach.

Jumaili MLF, Sonuç E

pubmed logopapersMay 17 2025
Alzheimer's disease (AD) is a progressive neurological disorder characterized by cognitive decline due to brain cell death, typically manifesting later in life.Early and accurate detection is critical for effective disease management and treatment. This study proposes an ensemble learning framework that combines five deep learning architectures (VGG16, VGG19, ResNet50, InceptionV3, and EfficientNetB7) to improve the accuracy of AD diagnosis. We use a comprehensive dataset of 3,714 MRI brain scans collected from specialized clinics in Iraq, categorized into three classes: NonDemented (834 images), MildDemented (1,824 images), and VeryDemented (1,056 images). The proposed voting ensemble model achieves a diagnostic accuracy of 99.32% on our dataset. The effectiveness of the model is further validated on two external datasets: OASIS (achieving 86.6% accuracy) and ADNI (achieving 99.5% accuracy), demonstrating competitive performance compared to existing approaches. Moreover, the proposed model exhibits high precision and recall across all stages of dementia, providing a reliable and robust tool for early AD detection. This study highlights the effectiveness of ensemble learning in AD diagnosis and shows promise for clinical applications.
Page 299 of 3343333 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.