Sort by:
Page 29 of 38375 results

Automated Neural Architecture Search for Cardiac Amyloidosis Classification from [18F]-Florbetaben PET Images.

Bargagna F, Zigrino D, De Santi LA, Genovesi D, Scipioni M, Favilli B, Vergaro G, Emdin M, Giorgetti A, Positano V, Santarelli MF

pubmed logopapersJun 1 2025
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention significantly. This study applies NAS to [18F]-Florbetaben PET cardiac images for classifying cardiac amyloidosis (CA) sub-types (amyloid light chain (AL) and transthyretin amyloid (ATTR)) and controls. Following data preprocessing and augmentation, an evolutionary cell-based NAS approach with a fixed network macro-structure is employed, automatically deriving cells' micro-structure. The algorithm is executed five times, evaluating 100 mutating architectures per run on an augmented dataset of 4048 images (originally 597), totaling 5000 architectures evaluated. The best network (NAS-Net) achieves 76.95% overall accuracy. K-fold analysis yields mean ± SD percentages of sensitivity, specificity, and accuracy on the test dataset: AL subjects (98.7 ± 2.9, 99.3 ± 1.1, 99.7 ± 0.7), ATTR-CA subjects (93.3 ± 7.8, 78.0 ± 2.9, 70.9 ± 3.7), and controls (35.8 ± 14.6, 77.1 ± 2.0, 96.7 ± 4.4). NAS-derived network performance rivals manually determined networks in the literature while using fewer parameters, validating its automatic approach's efficacy.

P2TC: A Lightweight Pyramid Pooling Transformer-CNN Network for Accurate 3D Whole Heart Segmentation.

Cui H, Wang Y, Zheng F, Li Y, Zhang Y, Xia Y

pubmed logopapersJun 1 2025
Cardiovascular disease is a leading global cause of death, requiring accurate heart segmentation for diagnosis and surgical planning. Deep learning methods have been demonstrated to achieve superior performances in cardiac structures segmentation. However, there are still limitations in 3D whole heart segmentation, such as inadequate spatial context modeling, difficulty in capturing long-distance dependencies, high computational complexity, and limited representation of local high-level semantic information. To tackle the above problems, we propose a lightweight Pyramid Pooling Transformer-CNN (P2TC) network for accurate 3D whole heart segmentation. The proposed architecture comprises a dual encoder-decoder structure with a 3D pyramid pooling Transformer for multi-scale information fusion and a lightweight large-kernel Convolutional Neural Network (CNN) for local feature extraction. The decoder has two branches for precise segmentation and contextual residual handling. The first branch is used to generate segmentation masks for pixel-level classification based on the features extracted by the encoder to achieve accurate segmentation of cardiac structures. The second branch highlights contextual residuals across slices, enabling the network to better handle variations and boundaries. Extensive experimental results on the Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 challenge dataset demonstrate that P2TC outperforms the most advanced methods, achieving the Dice scores of 92.6% and 88.1% in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities respectively, which surpasses the baseline model by 1.5% and 1.7%, and achieves state-of-the-art segmentation results.

Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging.

Liu Y, Cui ZX, Qin S, Liu C, Zheng H, Wang H, Zhou Y, Liang D, Zhu Y

pubmed logopapersJun 1 2025
Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ mapping sequence. The $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ parametric maps close to the reference maps, even at a high acceleration rate of 14.

Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images.

Chachadi K, Nirmala SR, Netrakar PG

pubmed logopapersJun 1 2025
The prevalence of coronary artery disease (CAD) has become the major cause of death across the world in recent years. The accurate segmentation of coronary artery is important in clinical diagnosis and treatment of coronary artery disease (CAD) such as stenosis detection and plaque analysis. Deep learning techniques have been shown to assist medical experts in diagnosing diseases using biomedical imaging. There are many methods which employ 2D DL models for medical image segmentation. The 2D Pyramid Scene Parsing Neural Network (PSPNet) has potential in this domain but not explored for the segmentation of coronary arteries from 3D Coronary Computed Tomography Angiography (CCTA) images. The contribution of present research work is to propose the modification of 2D PSPNet into 3D PSPNet for segmenting the coronary arteries from 3D CCTA images. The innovative factor is to evaluate the network performance by employing Global processing and Patch based processing methods. The experimental results achieved a Dice Similarity Coefficient (DSC) of 0.76 for Global process method and 0.73 for Patch based method using a subset of 200 images from the ImageCAS dataset.

A systematic review on deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction.

Shrivastava P, Kashikar S, Parihar PH, Kasat P, Bhangale P, Shrivastava P

pubmed logopapersJun 1 2025
Coronary artery disease (CAD) is a major worldwide health concern, contributing significantly to the global burden of cardiovascular diseases (CVDs). According to the 2023 World Health Organization (WHO) report, CVDs account for approximately 17.9 million deaths annually. This emphasizies the need for advanced diagnostic tools such as coronary computed tomography angiography (CCTA). The incorporation of deep learning (DL) technologies could significantly improve CCTA analysis by automating the quantification of plaque and stenosis, thus enhancing the precision of cardiac risk assessments. A recent meta-analysis highlights the evolving role of CCTA in patient management, showing that CCTA-guided diagnosis and management reduced adverse cardiac events and improved event-free survival in patients with stable and acute coronary syndromes. An extensive literature search was carried out across various electronic databases, such as MEDLINE, Embase, and the Cochrane Library. This search utilized a specific strategy that included both Medical Subject Headings (MeSH) terms and pertinent keywords. The review adhered to PRISMA guidelines and focused on studies published between 2019 and 2024 that employed deep learning (DL) for coronary computed tomography angiography (CCTA) in patients aged 18 years or older. After implementing specific inclusion and exclusion criteria, a total of 10 articles were selected for systematic evaluation regarding quality and bias. This systematic review included a total of 10 studies, demonstrating the high diagnostic performance and predictive capabilities of various deep learning models compared to different imaging modalities. This analysis highlights the effectiveness of these models in enhancing diagnostic accuracy in imaging techniques. Notably, strong correlations were observed between DL-derived measurements and intravascular ultrasound findings, enhancing clinical decision-making and risk stratification for CAD. Deep learning-enabled CCTA represents a promising advancement in the quantification of coronary plaques and stenosis, facilitating improved cardiac risk prediction and enhancing clinical workflow efficiency. Despite variability in study designs and potential biases, the findings support the integration of DL technologies into routine clinical practice for better patient outcomes in CAD management.

Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

Mei J, Chen C, Liu R, Ma H

pubmed logopapersJun 1 2025
To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m<sup>2</sup>), 80 kV (24 kg/m<sup>2</sup> ≤ BMI < 28 kg/m<sup>2</sup>), 100 kV (BMI ≥ 28 kg/m<sup>2</sup>). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.

An Adaptive SCG-ECG Multimodal Gating Framework for Cardiac CTA.

Ganesh S, Abozeed M, Aziz U, Tridandapani S, Bhatti PT

pubmed logopapersJun 1 2025
Cardiovascular disease (CVD) is the leading cause of death worldwide. Coronary artery disease (CAD), a prevalent form of CVD, is typically assessed using catheter coronary angiography (CCA), an invasive, costly procedure with associated risks. While cardiac computed tomography angiography (CTA) presents a less invasive alternative, it suffers from limited temporal resolution, often resulting in motion artifacts that degrade diagnostic quality. Traditional ECG-based gating methods for CTA inadequately capture cardiac mechanical motion. To address this, we propose a novel multimodal approach that enhances CTA imaging by predicting cardiac quiescent periods using seismocardiogram (SCG) and ECG data, integrated through a weighted fusion (WF) approach and artificial neural networks (ANNs). We developed a regression-based ANN framework (r-ANN WF) designed to improve prediction accuracy and reduce computational complexity, which was compared with a classification-based framework (c-ANN WF), ECG gating, and US data. Our results demonstrate that the r-ANN WF approach improved overall diastolic and systolic cardiac quiescence prediction accuracy by 52.6% compared to ECG-based predictions, using ultrasound (US) as the ground truth, with an average prediction time of 4.83 ms. Comparative evaluations based on reconstructed CTA images show that both r-ANN WF and c-ANN WF offer diagnostic quality comparable to US-based gating, underscoring their clinical potential. Additionally, the lower computational complexity of r-ANN WF makes it suitable for real-time applications. This approach could enhance CTA's diagnostic quality, offering a more accurate and efficient method for CVD diagnosis and management.

Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis.

Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D

pubmed logopapersJun 1 2025
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.

A continuous-action deep reinforcement learning-based agent for coronary artery centerline extraction in coronary CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersJun 1 2025
The lumen centerline of the coronary artery allows vessel reconstruction used to detect stenoses and plaques. Discrete-action-based centerline extraction methods suffer from artifacts and plaques. This study aimed to develop a continuous-action-based method which performs more effectively in cases involving artifacts or plaques. A continuous-action deep reinforcement learning-based model was trained to predict the artery's direction and radius value. The model is based on an Actor-Critic architecture. The Actor learns a deterministic policy to output the actions made by an agent. These actions indicate the centerline's direction and radius value consecutively. The Critic learns a value function to evaluate the quality of the agent's actions. A novel DDR reward was introduced to measure the agent's action (both centerline extraction and radius estimate) at each step. The method achieved an average OV of 95.7%, OF of 93.6%, OT of 97.3%, and AI of 0.22 mm in 80 test data. In 53 cases with artifacts or plaques, it achieved an average OV of 95.0%, OF of 91.5%, OT of 96.7%, and AI of 0.23 mm. The 95% limits of agreement between the reference and estimated radius values were <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> 0.46 mm and 0.43 mm in the 80 test data. Experiments demonstrate that the Actor-Critic architecture can achieve efficient centerline extraction and radius estimate. Compared with discrete-action-based methods, our method performs more effectively in cases involving artifacts or plaques. The extracted centerlines and radius values allow accurate coronary artery reconstruction that facilitates the detection of stenoses and plaques.

Changes of Pericoronary Adipose Tissue in Stable Heart Transplantation Recipients and Comparison with Controls.

Yang J, Chen L, Yu J, Chen J, Shi J, Dong N, Yu F, Shi H

pubmed logopapersJun 1 2025
Pericoronary adipose tissue (PCAT) is a key cardiovascular risk biomarker, yet its temporal changes after heart transplantation (HT) and comparison with controls remain unclear. This study investigates the temporal changes of PCAT in stable HT recipients and compares it to controls. In this study, we analyzed 159 stable HT recipients alongside two control groups. Both control groups were matched to a subgroup of HT recipients who did not have coronary artery stenosis. Group 1 consisted of 60 individuals matched for age, sex, and body mass index (BMI), with no history of hypertension, diabetes, hyperlipidemia, or smoking. Group 2 included 56 individuals additionally matched for hypertension, diabetes, hyperlipidemia, and smoking history. PCAT volume and fat attenuation index (FAI) were measured using AI-based software. Temporal changes in PCAT were assessed at multiple time points in HT recipients, and PCAT in the subgroup of HT recipients without coronary stenosis was compared to controls. Stable HT recipients exhibited a progressive decrease in FAI and an increase in PCAT volume over time, particularly in the first five years post-HT. Similar trends were observed in the subgroup of HT recipients without coronary stenosis. Compared to controls, PCAT FAI was significantly higher in the HT subgroup during the first five years post-HT (P < 0.001). After five years, differences persisted but diminished, with no statistically significant differences observed in the PCAT of left anterior descending artery (LAD) (P > 0.05). A negative correlation was observed between FAI and PCAT volume post-HT (r = - 0.75 ∼ - 0.53). PCAT volume and FAI undergo temporal changes in stable HT recipients, especially during the first five years post-HT. Even in HT recipients without coronary stenosis, PCAT FAI differs from controls, indicating distinct changes in this cohort.
Page 29 of 38375 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.