Sort by:
Page 287 of 3463455 results

Deep learning-based automatic segmentation of arterial vessel walls and plaques in MR vessel wall images for quantitative assessment.

Yang L, Yang X, Gong Z, Mao Y, Lu SS, Zhu C, Wan L, Huang J, Mohd Noor MH, Wu K, Li C, Cheng G, Li Y, Liang D, Liu X, Zheng H, Hu Z, Zhang N

pubmed logopapersJun 3 2025
To develop and validate a deep-learning-based automatic method for vessel walls and atherosclerotic plaques segmentation for quantitative evaluation in MR vessel wall images. A total of 193 patients (107 patients for training and validation, 39 patients for internal test, 47 patients for external test) with atherosclerotic plaque from five centers underwent T1-weighted MRI scans and were included in the dataset. The first step of the proposed method was constructing a purely learning-based convolutional neural network (CNN) named Vessel-SegNet to segment the lumen and the vessel wall. The second step is using the vessel wall priors (including manual prior and Tversky-loss-based automatic prior) to improve the plaque segmentation, which utilizes the morphological similarity between the vessel wall and the plaque. The Dice similarity coefficient (DSC), intraclass correlation coefficient (ICC), etc., were used to evaluate the similarity, agreement, and correlations. Most of the DSCs for lumen and vessel wall segmentation were above 90%. The introduction of vessel wall priors can increase the DSC for plaque segmentation by over 10%, reaching 88.45%. Compared to dice-loss-based vessel wall priors, the Tversky-loss-based priors can further improve DSC by nearly 3%, reaching 82.84%. Most of the ICC values between the Vessel-SegNet and manual methods in the 6 quantitative measurements are greater than 85% (p-value < 0.001). The proposed CNN-based segmentation model can quickly and accurately segment vessel walls and plaques for quantitative evaluation. Due to the lack of testing with other equipment, populations, and anatomical studies, the reliability of the research results still requires further exploration. Question How can the accuracy and efficiency of vessel component segmentation for quantification, including the lumen, vessel wall, and plaque, be improved? Findings Improved CNN models, manual/automatic vessel wall priors, and Tversky loss can improve the performance of semi-automatic/automatic vessel components segmentation for quantification. Clinical relevance Manual segmentation of vessel components is a time-consuming yet important process. Rapid and accurate segmentation of the lumen, vessel walls, and plaques for quantification assessment helps patients obtain more accurate, efficient, and timely stroke risk assessments and clinical recommendations.

Developing a CT radiomics-based model for assessing split renal function using machine learning.

Zhan Y, Zheng J, Chen X, Chen Y, Fang C, Lai C, Dai M, Wu Z, Wu H, Yu T, Huang J, Yu H

pubmed logopapersJun 3 2025
This study aims to investigate whether non-contrast computed tomography radiomics can effectively reflect split renal function and to develop a radiomics model for its assessment. This retrospective study included kidneys from the study center and split them into training (70%) and testing (30%) sets. Renal dynamic imaging was used as the reference standard for measuring split renal function. Based on chronic kidney disease staging, kidneys were categorized into three groups according to glomerular filtration rate: > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup>.Features were selected based on feature importance ranking from a tree model, and a random forest radiomics model was built. A total of 543 kidneys were included, with 381 in the training set and 162 in the testing set. In the training set, 16 features identified as most important for distinguishing between the groups were ultimately included to develop the random forest model. The model demonstrated good discriminatory ability in the testing set. The AUC for the > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup> categories were 0.859 (95% CI 0.804-0.910), 0.679 (95% CI 0.589-0.760), and 0.901 (95% CI 0.848-0.946), respectively. The calibration curves for the kidneys in each group closely align with the diagonal, with Hosmer-Lemeshow test P-values of 0.124, 0.241, and 0.199 for the three groups, respectively (all P > 0.05). The decision curve analysis confirmed the radiomics model's clinical utility, demonstrating significantly higher net benefit than both treat-all and treat-none strategies at clinically relevant probability thresholds: 1-69% and 71-75% for the > 45 ml/min/1.73 m<sup>2</sup> group, 15-d50% for the 30-45 ml/min/1.73 m<sup>2</sup> group, and 0-99% for the < 30 ml/min/1.73 m<sup>2</sup> group. Non-contrast computed tomography radiomics can effectively reflect split renal function information, and the model developed based on it can accurately assess split renal function, holding great potential for clinical application.

Artificial intelligence for detecting traumatic intracranial haemorrhage with CT: A workflow-oriented implementation.

Abed S, Hergan K, Pfaff J, Dörrenberg J, Brandstetter L, Gradl J

pubmed logopapersJun 3 2025
The objective of this study was to assess the performance of an artificial intelligence (AI) algorithm in detecting intracranial haemorrhages (ICHs) on non-contrast CT scans (NCCT). Another objective was to gauge the department's acceptance of said algorithm. Surveys conducted at three and nine months post-implementation revealed an increase in radiologists' acceptance of the AI tool with an increasing performance. However, a significant portion still preferred an additional physician given comparable cost. Our findings emphasize the importance of careful software implementation into a robust IT architecture.

Deep learning reveals pathology-confirmed neuroimaging signatures in Alzheimer's, vascular and Lewy body dementias.

Wang D, Honnorat N, Toledo JB, Li K, Charisis S, Rashid T, Benet Nirmala A, Brandigampala SR, Mojtabai M, Seshadri S, Habes M

pubmed logopapersJun 3 2025
Concurrent neurodegenerative and vascular pathologies pose a diagnostic challenge in the clinical setting, with histopathology remaining the definitive modality for dementia-type diagnosis. To address this clinical challenge, we introduce a neuropathology-based, data-driven, multi-label deep-learning framework to identify and quantify in vivo biomarkers for Alzheimer's disease (AD), vascular dementia (VD) and Lewy body dementia (LBD) using antemortem T1-weighted MRI scans of 423 demented and 361 control participants from National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative datasets. Based on the best-performing deep-learning model, explainable heat maps were extracted to visualize disease patterns, and the novel Deep Signature of Pathology Atrophy REcognition (DeepSPARE) indices were developed, where a higher DeepSPARE score indicates more brain alterations associated with that specific pathology. A substantial discrepancy in clinical and neuropathological diagnosis was observed in the demented patients: 71% had more than one pathology, but 67% were diagnosed clinically as AD only. Based on these neuropathological diagnoses and leveraging cross-validation principles, the deep-learning model achieved the best performance, with a balanced accuracy of 0.844, 0.839 and 0.623 for AD, VD and LBD, respectively, and was used to generate the explainable deep-learning heat maps and DeepSPARE indices. The explainable deep-learning heat maps revealed distinct neuroimaging brain alteration patterns for each pathology: (i) the AD heat map highlighted bilateral hippocampal regions; (ii) the VD heat map emphasized white matter regions; and (iii) the LBD heat map exposed occipital alterations. The DeepSPARE indices were validated by examining their associations with cognitive testing and neuropathological and neuroimaging measures using linear mixed-effects models. The DeepSPARE-AD index was associated with Mini-Mental State Examination, the Trail Making Test B, memory, hippocampal volume, Braak stages, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) scores and Thal phases [false-discovery rate (FDR)-adjusted P < 0.05]. The DeepSPARE-VD index was associated with white matter hyperintensity volume and cerebral amyloid angiopathy (FDR-adjusted P < 0.001), and the DeepSPARE-LBD index was associated with Lewy body stages (FDR-adjusted P < 0.05). The findings were replicated in an out-of-sample Alzheimer's Disease Neuroimaging Initiative dataset by testing associations with cognitive, imaging, plasma and CSF measures. CSF and plasma tau phosphorylated at threonine-181 (pTau181) were significantly associated with DeepSPARE-AD in the AD and mild cognitive impairment amyloid-β positive (AD/MCIΑβ+) group (FDR-adjusted P < 0.001), and CSF α-synuclein was associated solely with DeepSPARE-LBD (FDR-adjusted P = 0.036). Overall, these findings demonstrate the advantages of our innovative deep-learning framework in detecting antemortem neuroimaging signatures linked to different pathologies. The newly deep-learning-derived DeepSPARE indices are precise, pathology-sensitive and single-valued non-invasive neuroimaging metrics, bridging the traditional widely available in vivo T1 imaging with histopathology.

Modelling pathological spread through the structural connectome in the frontotemporal dementia clinical spectrum.

Agosta F, Basaia S, Spinelli EG, Facente F, Lumaca L, Ghirelli A, Canu E, Castelnovo V, Sibilla E, Tripodi C, Freri F, Cecchetti G, Magnani G, Caso F, Verde F, Ticozzi N, Silani V, Caroppo P, Prioni S, Villa C, Tremolizzo L, Appollonio I, Raj A, Filippi M

pubmed logopapersJun 3 2025
The ability to predict the spreading of pathology in patients with frontotemporal dementia (FTD) is crucial for early diagnosis and targeted interventions. In this study, we examined the relationship between network vulnerability and longitudinal progression of atrophy in FTD patients, using the network diffusion model (NDM) of the spread of pathology. Thirty behavioural variant FTD (bvFTD), 13 semantic variant primary progressive aphasia (svPPA), 14 non-fluent variant primary progressive aphasia (nfvPPA) and 12 semantic behavioural variant FTD (sbvFTD) patients underwent longitudinal T1-weighted MRI. Fifty young controls (20-31 years of age) underwent multi-shell diffusion MRI scan. An NDM was developed to model progression of FTD pathology as a spreading process from a seed through the healthy structural connectome, using connectivity measures from fractional anisotropy and intracellular volume fraction in young controls. Four disease epicentres were initially identified from the peaks of atrophy of each FTD variant: left insula (bvFTD), left temporal pole (svPPA), right temporal pole (sbvFTD) and left supplementary motor area (nfvPPA). Pearson's correlations were calculated between NDM-predicted atrophy in young controls and the observed longitudinal atrophy in FTD patients over a follow-up period of 24 months. The NDM was then run for all 220 brain seeds to verify whether the four epicentres were among those that yielded the highest correlation. Using the NDM, predictive maps in young controls showed progression of pathology from the peaks of atrophy in svPPA, nfvPPA and sbvFTD over 24 months. svPPA exhibited early involvement of the left temporal and occipital lobes, progressing to extensive left hemisphere impairment. nfvPPA and sbvFTD spread in a similar manner bilaterally to frontal, sensorimotor and temporal regions, with sbvFTD additionally affecting the right hemisphere. Moreover, the NDM-predicted atrophy of each region was positively correlated with longitudinal real atrophy, with a greater effect in svPPA and sbvFTD. In bvFTD, the model starting from the left insula (the peak of atrophy) demonstrated a highly left-lateralized pattern, with pathology spreading to frontal, sensorimotor, temporal and basal ganglia regions, with minimal extension to the contralateral hemisphere by 24 months. However, unlike the atrophy peaks observed in the other three phenotypes, the left insula did not show the strongest correlation between the estimated and real atrophy. Instead, the bilateral superior frontal gyrus emerged as optimal seeds for modelling atrophy spread, showing the highest correlation ranking in both hemispheres. Overall, NDM applied on the intracellular volume fraction connectome yielded higher correlations relative to NDM applied on fractional anisotropy maps. The NDM implementation using the cross-sectional structural connectome is a valuable tool to predict patterns of atrophy and spreading of pathology in FTD clinical variants.

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

Jaiswal R, Pivodic A, Zoulakis M, Axelsson KF, Litsne H, Johansson L, Lorentzon M

pubmed logopapersJun 3 2025
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from HR-pQCT. In a prospective cohort study of 3028 community-dwelling women aged 75-80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by DXA and HR-pQCT. Medical records, a regional x-ray archive, and registers were used to identify incident fractures and death. Prediction models for hip, major osteoporotic fracture (MOF), and any fracture were developed using Cox proportional hazards regression and machine learning algorithms (neural network, random forest, ensemble, and Extreme Gradient Boosting). In the 2856 (94.3%) women with complete HR-pQCT data at 2 tibia sites (distal and ultra-distal), the median follow-up period was 8.0 yr, and 217 hip, 746 MOF, and 1008 any type of incident fracture occurred. In Cox regression models adjusted for age, BMI, clinical risk factors (CRFs), and FN BMD, the strongest predictors of hip fracture were tibia total volumetric BMD and cortical thickness. The performance of the Cox regression-based prediction models for hip fracture was significantly improved by HR-pQCT (time-dependent AUC; area under receiver operating characteristic curve at 5 yr of follow-up 0.75 [0.64-0.85]), compared to a reference model including CRFs and FN BMD (AUC = 0.71 [0.58-0.81], p < .001) and a Fracture Risk Assessment Tool risk score model (AUC = 0.70 [0.60-0.80], p < .001). The Cox regression model for hip fracture had a significantly higher accuracy than the neural network-based model, the best-performing machine learning algorithm, at clinically relevant sensitivity levels. We conclude that the addition of HR-pQCT parameters improves the prediction of hip fractures in a cohort of older Swedish women.

Co-Evidential Fusion with Information Volume for Medical Image Segmentation

Yuanpeng He, Lijian Li, Tianxiang Zhan, Chi-Man Pun, Wenpin Jiao, Zhi Jin

arxiv logopreprintJun 3 2025
Although existing semi-supervised image segmentation methods have achieved good performance, they cannot effectively utilize multiple sources of voxel-level uncertainty for targeted learning. Therefore, we propose two main improvements. First, we introduce a novel pignistic co-evidential fusion strategy using generalized evidential deep learning, extended by traditional D-S evidence theory, to obtain a more precise uncertainty measure for each voxel in medical samples. This assists the model in learning mixed labeled information and establishing semantic associations between labeled and unlabeled data. Second, we introduce the concept of information volume of mass function (IVUM) to evaluate the constructed evidence, implementing two evidential learning schemes. One optimizes evidential deep learning by combining the information volume of the mass function with original uncertainty measures. The other integrates the learning pattern based on the co-evidential fusion strategy, using IVUM to design a new optimization objective. Experiments on four datasets demonstrate the competitive performance of our method.

Multi-modal brain MRI synthesis based on SwinUNETR

Haowen Pang, Weiyan Guo, Chuyang Ye

arxiv logopreprintJun 3 2025
Multi-modal brain magnetic resonance imaging (MRI) plays a crucial role in clinical diagnostics by providing complementary information across different imaging modalities. However, a common challenge in clinical practice is missing MRI modalities. In this paper, we apply SwinUNETR to the synthesize of missing modalities in brain MRI. SwinUNETR is a novel neural network architecture designed for medical image analysis, integrating the strengths of Swin Transformer and convolutional neural networks (CNNs). The Swin Transformer, a variant of the Vision Transformer (ViT), incorporates hierarchical feature extraction and window-based self-attention mechanisms, enabling it to capture both local and global contextual information effectively. By combining the Swin Transformer with CNNs, SwinUNETR merges global context awareness with detailed spatial resolution. This hybrid approach addresses the challenges posed by the varying modality characteristics and complex brain structures, facilitating the generation of accurate and realistic synthetic images. We evaluate the performance of SwinUNETR on brain MRI datasets and demonstrate its superior capability in generating clinically valuable images. Our results show significant improvements in image quality, anatomical consistency, and diagnostic value.

A first-of-its-kind two-body statistical shape model of the arthropathic shoulder: enhancing biomechanics and surgical planning.

Blackman J, Giles JW

pubmed logopapersJun 3 2025
Statistical Shape Models are machine learning tools in computational orthopedics that enable the study of anatomical variability and the creation of synthetic models for pathogenetic analysis and surgical planning. Current models of the glenohumeral joint either describe individual bones or are limited to non-pathologic datasets, failing to capture coupled shape variation in arthropathic anatomy. We aimed to develop a novel combined scapula-proximal-humerus model applicable to clinical populations. Preoperative computed tomography scans from 45 Reverse Total Shoulder Arthroplasty patients were used to generate three-dimensional models of the scapula and proximal humerus. Correspondence point clouds were combined into a two-body shape model using Principal Component Analysis. Individual scapula-only and proximal-humerus-only shape models were also created for comparison. The models were validated using compactness, specificity, generalization ability, and leave-one-out cross-validation. The modes of variation for each model were also compared. The combined model was described using eigenvector decomposition into single body models. The models were further compared in their ability to predict the shape of one body when given the shape of its counterpart, and the generation of diverse realistic synthetic pairs de novo. The scapula and proximal-humerus models performed comparably to previous studies with median average leave-one-out cross-validation errors of 1.08 mm (IQR: 0.359 mm), and 0.521 mm (IQR: 0.111 mm); the combined model was similar with median error of 1.13 mm (IQR: 0.239 mm). The combined model described coupled variations between the shapes equalling 43.2% of their individual variabilities, including the relationship between glenoid and humeral head erosions. The combined model outperformed the individual models generatively with reduced missing shape prediction bias (> 10%) and uniformly diverse shape plausibility (uniformity p-value < .001 vs. .59). This study developed the first two-body scapulohumeral shape model that captures coupled variations in arthropathic shoulder anatomy and the first proximal-humeral statistical model constructed using a clinical dataset. While single-body models are effective for descriptive tasks, combined models excel in generating joint-level anatomy. This model can be used to augment computational analyses of synthetic populations investigating shoulder biomechanics and surgical planning.

Machine learning for classification of pediatric bipolar disorder with and without psychotic symptoms based on thalamic subregional structural volume.

Gao W, Zhang K, Jiao Q, Su L, Cui D, Lu S, Yang R

pubmed logopapersJun 3 2025
The thalamus plays a crucial role in sensory processing, emotional regulation, and cognitive functions, and its dysregulation may be implicated in psychosis. The aim of the present study was to examine the differences in thalamic subregional volumes between pediatric bipolar disorder patients with (P-PBD) and without psychotic symptoms (NP-PBD). Participants including 28 P-PBD, 26 NP-PBD, and 18 healthy controls (HCs) underwent structural magnetic resonance imaging (sMRI) scanning using a 3.0T MRI scanner. All T1-weighted imaging data were processed by FreeSurfer 7.4.0 software. The volumetric differences of thalamic subregions among three groups were compared by using analyses of covariance (ANCOVA) and post-hoc analyses. Additionally, we applied a standard support vector classification (SVC) model for pairwise comparison among the three groups to identify brain regions with significant volumetric differences. The ANCOVA revealed that significant volumetric differences were observed in the left pulvinar anterior (L_PuA) and left reuniens medial ventral (L_MV-re) thalamus among three groups. Post-hoc analysis revealed that patients with P-PBD exhibited decreased volumes in the L_PuA and L_MV-re when compared to the NP-PBD group and HCs, respectively. Furthermore, the SVC model revealed that the L_MV-re volume exhibited the best capacity to discriminate P-PBD from NP-PBD and HCs. The present findings demonstrated that reduced thalamic subregional volumes in the L_PuA and L_MV-re might be associated with psychotic symptoms in PBD.
Page 287 of 3463455 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.