Sort by:
Page 28 of 1291284 results

An adaptive deep learning approach based on InBNFus and CNNDen-GRU networks for breast cancer and maternal fetal classification using ultrasound images.

Fatima M, Khan MA, Mirza AM, Shin J, Alasiry A, Marzougui M, Cha J, Chang B

pubmed logopapersJul 1 2025
Convolutional Neural Networks (CNNs), a sophisticated deep learning technique, have proven highly effective in identifying and classifying abnormalities related to various diseases. The manual classification of these is a hectic and time-consuming process; therefore, it is essential to develop a computerized technique. Most existing methods are designed to address a single specific problem, limiting their adaptability. In this work, we proposed a novel adaptive deep-learning framework for simultaneously classifying breast cancer and maternal-fetal ultrasound datasets. Data augmentation was applied in the preprocessing phase to address the data imbalance problem. After, two novel architectures are proposed: InBnFUS and CNNDen-GRU. The InBnFUS network combines 5-Blocks inception-based architecture (Model 1) and 5-Blocks inverted bottleneck-based architecture (Model 2) through a depth-wise concatenation layer, while CNNDen-GRU incorporates 5-Blocks dense architecture with an integrated GRU layer. Post-training features were extracted from the global average pooling and GRU layer and classified using neural network classifiers. The experimental evaluation achieved enhanced accuracy rates of 99.0% for breast cancer, 96.6% for maternal-fetal (common planes), and 94.6% for maternal-fetal (brain) datasets. Additionally, the models consistently achieve high precision, recall, and F1 scores across both datasets. A comprehensive ablation study has been performed, and the results show the superior performance of the proposed models.

Developments in MRI radiomics research for vascular cognitive impairment.

Chen X, Luo X, Chen L, Liu H, Yin X, Chen Z

pubmed logopapersJul 1 2025
Vascular cognitive impairment (VCI) is an umbrella term for diseases associated with cognitive decline induced by substantive brain damage following pathological changes in the cerebrovascular system. The primary clinical manifestations include behavioral abnormalities and diminished learning and memory cognitive functions. If the location and extent of brain injury are not identified early and therapeutic interventions are not promptly administered, it may lead to irreversible cognitive impairment. Therefore, the early diagnosis of VCI is crucial for its prevention and treatment. Prior to the onset of cognitive impairment in VCI, magnetic resonance imaging (MRI) radiomics can be utilized for early assessment and diagnosis, thereby guiding clinicians in providing precise treatment for patients, which holds significant potential for development. This article reviews the classification of VCI, the concept of radiomics, the application of MRI radiomics in VCI, and the limitations of radiomics in the context of advancements in its application within the central nervous system. CRITICAL RELEVANCE STATEMENT: This article explores how MRI radiomics can be used to detect VCI early, enhancing clinical radiology practice by offering a reliable method for prediction, diagnosis, and identification, which also promotes standardization in research and integration of disciplines. KEY POINTS: MRI radiomics can predict VCI early. MRI radiomics can diagnose VCI. MRI radiomics distinguishes VCI from Alzheimer's disease.

Redefining prostate cancer care: innovations and future directions in active surveillance.

Koett M, Melchior F, Artamonova N, Bektic J, Heidegger I

pubmed logopapersJul 1 2025
This review provides a critical analysis of recent advancements in active surveillance (AS), emphasizing updates from major international guidelines and their implications for clinical practice. Recent revisions to international guidelines have broadened the eligibility criteria for AS to include selected patients with ISUP grade group 2 prostate cancer. This adjustment acknowledges that certain intermediate-risk cancers may be appropriate for AS, reflecting a heightened focus on achieving a balance between oncologic control and maintaining quality of life by minimizing the risk of overtreatment. This review explores key innovations in AS for prostate cancer, including multi parametric magnetic resonance imaging (mpMRI), genomic biomarkers, and risk calculators, which enhance patient selection and monitoring. While promising, their routine use remains debated due to guideline inconsistencies, cost, and accessibility. Special focus is given to biomarkers for identifying ISUP grade group 2 cancers suitable for AS. Additionally, the potential of artificial intelligence to improve diagnostic accuracy and risk stratification is examined. By integrating these advancements, this review provides a critical perspective on optimizing AS for more personalized and effective prostate cancer management.

Liver Fat Fraction and Machine Learning Improve Steatohepatitis Diagnosis in Liver Transplant Patients.

Hajek M, Sedivy P, Burian M, Mikova I, Trunecka P, Pajuelo D, Dezortova M

pubmed logopapersJul 1 2025
Machine learning identifies liver fat fraction (FF) measured by <sup>1</sup>H MR spectroscopy, insulinemia, and elastography as robust, non-invasive biomarkers for diagnosing steatohepatitis in liver transplant patients, validated through decision tree analysis. Compared to the general population (~5.8% prevalence), MASH is significantly more common in liver transplant recipients (~30%-50%). In patients with FF > 5.3%, the positive predictive value for MASH ranged up to 97%, more than twice the value observed in the general population.

Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Lamba K, Rani S, Shabaz M

pubmed logopapersJul 1 2025
Brain tumor causes life-threatening consequences due to which its timely detection and accurate classification are critical for determining appropriate treatment plans while focusing on the improved patient outcomes. However, conventional approaches of brain tumor diagnosis, such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans, are often labor-intensive, prone to human error, and completely reliable on expertise of radiologists.Thus, the integration of advanced techniques such as Machine Learning (ML) and Deep Learning (DL) has brought revolution in the healthcare sector due to their supporting features or properties having ability to analyze medical images in recent years, demonstrating great potential for achieving accurate and improved outcomes but also resulted in a few drawbacks due to their black-box nature. As understanding reasoning behind their predictions is still a great challenge for the healthcare professionals and raised a great concern about their trustworthiness, interpretability and transparency in clinical settings. Thus, an advanced algorithm of explainable artificial intelligence (XAI) has been synergized with hybrid model comprising of DenseNet201 network for extracting the most important features based on the input Magnetic resonance imaging (MRI) data following supervised algorithm, support vector machine (SVM) to distinguish distinct types of brain scans. To overcome this, an explainable hybrid framework has been proposed that integrates DenseNet201 for deep feature extraction with a Support Vector Machine (SVM) classifier for robust binary classification. A region-adaptive preprocessing pipeline is used to enhance tumor visibility and feature clarity. To address the need for interpretability, multiple XAI techniques-Grad-CAM, Integrated Gradients (IG), and Layer-wise Relevance Propagation (LRP) have been incorporated. Our comparative evaluation shows that LRP achieves the highest performance across all explainability metrics, with 98.64% accuracy, 0.74 F1-score, and 0.78 IoU. The proposed model provides transparent and highly accurate diagnostic predictions, offering a reliable clinical decision support tool. It achieves 0.9801 accuracy, 0.9223 sensitivity, 0.9909 specificity, 0.9154 precision, and 0.9360 F1-score, demonstrating strong potential for real-world brain tumor diagnosis and personalized treatment strategies.

Prediction of axillary lymph node metastasis in triple negative breast cancer using MRI radiomics and clinical features.

Shen Y, Huang R, Zhang Y, Zhu J, Li Y

pubmed logopapersJul 1 2025
To develop and validate a machine learning-based prediction model to predict axillary lymph node (ALN) metastasis in triple negative breast cancer (TNBC) patients using magnetic resonance imaging (MRI) and clinical characteristics. This retrospective study included TNBC patients from the First Affiliated Hospital of Soochow University and Jiangsu Province Hospital (2016-2023). We analyzed clinical characteristics and radiomic features from T2-weighted MRI. Using LASSO regression for feature selection, we applied Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) to build prediction models. A total of 163 patients, with a median age of 53 years (range: 24-73), were divided into a training group (n = 115) and a validation group (n = 48). Among them, 54 (33.13%) had ALN metastasis, and 109 (66.87%) were non-metastasis. Nottingham grade (P = 0.005), tumor size (P = 0.016) were significant difference between non-metastasis cases and metastasis cases. In the validation set, the LR-based combined model achieved the highest AUC (0.828, 95%CI: 0.706-0.950) with excellent sensitivity (0.813) and accuracy (0.812). Although the RF-based model had the highest AUC in the training set and the highest specificity (0.906) in the validation set, its performance was less consistent compared to the LR model. MRI-T2WI radiomic features predict ALN metastasis in TNBC, with integration into clinical models enhancing preoperative predictions and personalizing management.

Perilesional dominance: radiomics of multiparametric MRI enhances differentiation of IgG4-Related ophthalmic disease and orbital MALT lymphoma.

Li J, Zhou C, Qu X, Du L, Yuan Q, Han Q, Xian J

pubmed logopapersJul 1 2025
To develop and validate a diagnostic framework integrating intralesional (ILN) and perilesional (PLN) radiomics derived from multiparametric MRI (mpMRI) for distinguishing IgG4-related ophthalmic disease (IgG4-ROD) from orbital mucosa-associated lymphoid tissue (MALT) lymphoma. This multicenter retrospective study analyzed 214 histopathologically confirmed cases (68 IgG4-ROD, 146 MALT lymphoma) from two institutions (2019-2024). A LASSO-SVM classifier was optimized through comparative evaluation of seven machine learning models, incorporating fused radiomic features (1,197 features) from ILN/PLN regions. Diagnostic performance was benchmarked against two subspecialty radiologists (10-20 years' experience) using receiver operating characteristics - area under the curve (AUC), precision-recall AUC (PR-AUC), and decision curve analysis (DCA), adhering to CLEAR/METRICS guidelines. The fusion model (FR_RAD) achieved state-of-the-art performance, with an AUC of 0.927 (95% CI 0.902-0.958) and a PR-AUC of 0.901 (95% CI 0.862-0.940) in the training set, and an AUC of 0.907 (95% CI 0.857-0.965) and a PR-AUC of 0.872 (95% CI 0.820-0.924) on external testing. In contrast, subspecialty radiologists achieved lower AUCs of 0.671-0.740 (95% CI 0.630-0.780) and PR-AUCs of 0.553-0.632 (95% CI 0.521-0.664) (all p < 0.001). FR_RAD also outperformed radiologists in accuracy (88.6% vs. 66.2% and 71.3%; p < 0.01). DCA demonstrated a net benefit of 0.18 at a high-risk threshold of 30%, equivalent to avoiding 18 unnecessary biopsies per 100 cases. The fusion model integrating multi-regional radiomics from mpMRI achieves precise differentiation between IgG4-ROD and orbital MALT lymphoma, outperforming subspecialty radiologists. This approach highlights the transformative potential of spatial radiomics analysis in resolving diagnostic uncertainties and reducing reliance on invasive procedures for orbital lesion characterization.

Tumor grade-titude: XGBoost radiomics paves the way for RCC classification.

Ellmann S, von Rohr F, Komina S, Bayerl N, Amann K, Polifka I, Hartmann A, Sikic D, Wullich B, Uder M, Bäuerle T

pubmed logopapersJul 1 2025
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 RCC patients who underwent contrast-enhanced CT scans were included in the analysis. Radiomic features were extracted, and a two-step feature selection methodology was applied to identify the most relevant features for classification. The XGBoost model demonstrated high performance in both training (AUC = 0.87) and testing (AUC = 0.92) sets, with no significant difference between the two (p = 0.521). The model also exhibited high sensitivity, specificity, positive predictive value, and negative predictive value. The selected radiomic features captured both the distribution of intensity values and spatial relationships, which may provide valuable insights for personalized treatment decision-making. Our findings suggest that the XGBoost model has the potential to be integrated into clinical workflows to facilitate personalized adjuvant immunotherapy decision-making, ultimately improving patient outcomes. Further research is needed to validate the model in larger, multicentre cohorts and explore the potential of combining radiomic features with other clinical and molecular data.

Advancements in the application of MRI radiomics in meningioma.

Song D, Cai R, Lou Y, Zhang K, Xu D, Yan D, Guo F

pubmed logopapersJul 1 2025
Meningiomas are among the most common intracranial tumors, and challenges still remain in terms of tumor classification, treatment, and management. With the popularization of artificial intelligence technology, radiomics has been further developed and more extensively applied in the study of meningiomas. This objective and quantitative technique has played an important role in the identification, classification, grading, pathology, treatment, and prognosis of meningiomas, although new problems have also emerged. This review examines the application of magnetic resonance imaging (MRI) techniques in meningioma research. A database search was conducted for articles published between November 2017 and April 2025, with a total of 87 studies included after screening. These studies were summarized in detail, and the risk of bias and the certainty of the evidence were assessed using the Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2) and radiomics quality scores (RQS). All the studies were retrospective, with most being single-center studies. Contrast-enhanced T1-weighted imaging (T1C) and T2-weighted imaging (T2WI) are the most commonly used MRI sequences. Current research focuses on five topics, namely, differentiation, grade and subtypes, molecular pathology, biological behavior, treatment, and complications, with 14, 32, 14, 12, and 19 studies addressing these topics (some of which are multiple topics). Combined imaging features with clinical or pathological features often outperform traditional clinical models. Most studies show a low to moderate risk of bias. Large, prospective, multicenter studies are needed to validate the performance of radiomic models in diverse patient populations before their clinical implementation can be considered.

Machine-learning model based on ultrasomics for non-invasive evaluation of fibrosis in IgA nephropathy.

Huang Q, Huang F, Chen C, Xiao P, Liu J, Gao Y

pubmed logopapersJul 1 2025
To develop and validate an ultrasomics-based machine-learning (ML) model for non-invasive assessment of interstitial fibrosis and tubular atrophy (IF/TA) in patients with IgA nephropathy (IgAN). In this multi-center retrospective study, 471 patients with primary IgA nephropathy from four institutions were included (training, n = 275; internal testing, n = 69; external testing, n = 127; respectively). The least absolute shrinkage and selection operator logistic regression with tenfold cross-validation was used to identify the most relevant features. The ML models were constructed based on ultrasomics. The Shapley Additive Explanation (SHAP) was used to explore the interpretability of the models. Logistic regression analysis was employed to combine ultrasomics, clinical data, and ultrasound imaging characteristics, creating a comprehensive model. A receiver operating characteristic curve, calibration, decision curve, and clinical impact curve were used to evaluate prediction performance. To differentiate between mild and moderate-to-severe IF/TA, three prediction models were developed: the Rad_SVM_Model, Clinic_LR_Model, and Rad_Clinic_Model. The area under curves of these three models were 0.861, 0.884, and 0.913 in the training cohort, and 0.760, 0.860, and 0.894 in the internal validation cohort, as well as 0.794, 0.865, and 0.904 in the external validation cohort. SHAP identified the contribution of radiomics features. Difference analysis showed that there were significant differences between radiomics features and fibrosis. The comprehensive model was superior to that of individual indicators and performed well. We developed and validated a model that combined ultrasomics, clinical data, and clinical ultrasonic characteristics based on ML to assess the extent of fibrosis in IgAN. Question Currently, there is a lack of a comprehensive ultrasomics-based machine-learning model for non-invasive assessment of the extent of Immunoglobulin A nephropathy (IgAN) fibrosis. Findings We have developed and validated a robust and interpretable machine-learning model based on ultrasomics for assessing the degree of fibrosis in IgAN. Clinical relevance The machine-learning model developed in this study has significant interpretable clinical relevance. The ultrasomics-based comprehensive model had the potential for non-invasive assessment of fibrosis in IgAN, which helped evaluate disease progress.
Page 28 of 1291284 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.