Sort by:
Page 28 of 74733 results

Accelerated Multi-b-Value DWI Using Deep Learning Reconstruction: Image Quality Improvement and Microvascular Invasion Prediction in BCLC Stage A Hepatocellular Carcinoma.

Zhu Y, Wang P, Wang B, Feng B, Cai W, Wang S, Meng X, Wang S, Zhao X, Ma X

pubmed logopapersJul 1 2025
To investigate the effect of accelerated deep-learning (DL) multi-b-value DWI (Mb-DWI) on acquisition time, image quality, and predictive ability of microvascular invasion (MVI) in BCLC stage A hepatocellular carcinoma (HCC), compared to standard Mb-DWI. Patients who underwent liver MRI were prospectively collected. Subjective image quality, signal-to-noise ratio (SNR), lesion contrast-to-noise ratio (CNR), and Mb-DWI-derived parameters from various models (mono-exponential model, intravoxel incoherent motion, diffusion kurtosis imaging, and stretched exponential model) were calculated and compared between the two sequences. The Mb-DWI parameters of two sequences were compared between MVI-positive and MVI-negative groups, respectively. ROC and logistic regression analysis were performed to evaluate and identify the predictive performance. The study included 118 patients. 48/118 (40.67%) lesions were identified as MVI positive. DL Mb-DWI significantly reduced acquisition time by 52.86%. DL Mb-DWI produced significantly higher overall image quality, SNR, and CNR than standard Mb-DWI. All diffusion-related parameters except pseudo-diffusion coefficient showed significant differences between the two sequences. Both in DL and standard Mb-DWI, the apparent diffusion coefficient, true diffusion coefficient (D), perfusion fraction (f), mean diffusivity (MD), mean kurtosis (MK), and distributed diffusion coefficient (DDC) values were significantly different between MVI-positive and MVI-negative groups. The combination of D, f, and MK yield the highest AUC of 0.912 and 0.928 in standard and DL sequences, with no significant difference regarding the predictive efficiency. The DL Mb-DWI significantly reduces acquisition time and improves image quality, with comparable predictive performance to standard Mb-DWI in discriminating MVI status in BCLC stage A HCC.

Machine-learning model based on ultrasomics for non-invasive evaluation of fibrosis in IgA nephropathy.

Huang Q, Huang F, Chen C, Xiao P, Liu J, Gao Y

pubmed logopapersJul 1 2025
To develop and validate an ultrasomics-based machine-learning (ML) model for non-invasive assessment of interstitial fibrosis and tubular atrophy (IF/TA) in patients with IgA nephropathy (IgAN). In this multi-center retrospective study, 471 patients with primary IgA nephropathy from four institutions were included (training, n = 275; internal testing, n = 69; external testing, n = 127; respectively). The least absolute shrinkage and selection operator logistic regression with tenfold cross-validation was used to identify the most relevant features. The ML models were constructed based on ultrasomics. The Shapley Additive Explanation (SHAP) was used to explore the interpretability of the models. Logistic regression analysis was employed to combine ultrasomics, clinical data, and ultrasound imaging characteristics, creating a comprehensive model. A receiver operating characteristic curve, calibration, decision curve, and clinical impact curve were used to evaluate prediction performance. To differentiate between mild and moderate-to-severe IF/TA, three prediction models were developed: the Rad_SVM_Model, Clinic_LR_Model, and Rad_Clinic_Model. The area under curves of these three models were 0.861, 0.884, and 0.913 in the training cohort, and 0.760, 0.860, and 0.894 in the internal validation cohort, as well as 0.794, 0.865, and 0.904 in the external validation cohort. SHAP identified the contribution of radiomics features. Difference analysis showed that there were significant differences between radiomics features and fibrosis. The comprehensive model was superior to that of individual indicators and performed well. We developed and validated a model that combined ultrasomics, clinical data, and clinical ultrasonic characteristics based on ML to assess the extent of fibrosis in IgAN. Question Currently, there is a lack of a comprehensive ultrasomics-based machine-learning model for non-invasive assessment of the extent of Immunoglobulin A nephropathy (IgAN) fibrosis. Findings We have developed and validated a robust and interpretable machine-learning model based on ultrasomics for assessing the degree of fibrosis in IgAN. Clinical relevance The machine-learning model developed in this study has significant interpretable clinical relevance. The ultrasomics-based comprehensive model had the potential for non-invasive assessment of fibrosis in IgAN, which helped evaluate disease progress.

Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer.

Wang Y, Xie B, Wang K, Zou W, Liu A, Xue Z, Liu M, Ma Y

pubmed logopapersJul 1 2025
This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI) status of rectal cancer (RC) patients. This retrospective study recruited 291 rectal cancer patients with pathologically confirmed MSI status and randomly divided them into a training cohort and a testing cohort at a ratio of 8:2. First, the K-means method was used for cluster analysis of tumor voxels, and sub-region radiomics features and classical radiomics features were respectively extracted from multi-parameter MRI sequences. Then, the synthetic minority over-sampling technique method was used to balance the sample size, and finally, the features were screened. Prediction models were established using logistic regression based on clinicopathological variables, classical radiomics features, and MSI-related sub-region radiomics features, and the contribution of each feature to the model decision was quantified by the Shapley-Additive-Explanations (SHAP) algorithm. The area under the curve (AUC) of the sub-region radiomics model in the training and testing groups was 0.848 and 0.8, respectively, both better than that of the classical radiomics and clinical models. The combined model performed the best, with AUCs of 0.908 and 0.863 in the training and testing groups, respectively. We developed and validated a robust combined model that integrates clinical variables, classical radiomics features, and sub-region radiomics features to accurately determine the MSI status of RC patients. We visualized the prediction process using SHAP, enabling more effective personalized treatment plans and ultimately improving RC patient survival rates.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

Ultrasound-based machine learning model to predict the risk of endometrial cancer among postmenopausal women.

Li YX, Lu Y, Song ZM, Shen YT, Lu W, Ren M

pubmed logopapersJul 1 2025
Current ultrasound-based screening for endometrial cancer (EC) primarily relies on endometrial thickness (ET) and morphological evaluation, which suffer from low specificity and high interobserver variability. This study aimed to develop and validate an artificial intelligence (AI)-driven diagnostic model to improve diagnostic accuracy and reduce variability. A total of 1,861 consecutive postmenopausal women were enrolled from two centers between April 2021 and April 2024. Super-resolution (SR) technique was applied to enhance image quality before feature extraction. Radiomics features were extracted using Pyradiomics, and deep learning features were derived from convolutional neural network (CNN). Three models were developed: (1) R model: radiomics-based machine learning (ML) algorithms; (2) CNN model: image-based CNN algorithms; (3) DLR model: a hybrid model combining radiomics and deep learning features with ML algorithms. Using endometrium-level regions of interest (ROI), the DLR model achieved the best diagnostic performance, with an area under the receiver operating characteristic curve (AUROC) of 0.893 (95% CI: 0.847-0.932), sensitivity of 0.847 (95% CI: 0.692-0.944), and specificity of 0.810 (95% CI: 0.717-0.910) in the internal testing dataset. Consistent performance was observed in the external testing dataset (AUROC 0.871, sensitivity 0.792, specificity 0.829). The DLR model consistently outperformed both the R and CNN models. Moreover, endometrium-level ROIs yielded better results than uterine-corpus-level ROIs. This study demonstrates the feasibility and clinical value of AI-enhanced ultrasound analysis for EC detection. By integrating radiomics and deep learning features with SR-based image preprocessing, our model improves diagnostic specificity, reduces false positives, and mitigates operator-dependent variability. This non-invasive approach offers a more accurate and reliable tool for EC screening in postmenopausal women. Not applicable.

Redefining prostate cancer care: innovations and future directions in active surveillance.

Koett M, Melchior F, Artamonova N, Bektic J, Heidegger I

pubmed logopapersJul 1 2025
This review provides a critical analysis of recent advancements in active surveillance (AS), emphasizing updates from major international guidelines and their implications for clinical practice. Recent revisions to international guidelines have broadened the eligibility criteria for AS to include selected patients with ISUP grade group 2 prostate cancer. This adjustment acknowledges that certain intermediate-risk cancers may be appropriate for AS, reflecting a heightened focus on achieving a balance between oncologic control and maintaining quality of life by minimizing the risk of overtreatment. This review explores key innovations in AS for prostate cancer, including multi parametric magnetic resonance imaging (mpMRI), genomic biomarkers, and risk calculators, which enhance patient selection and monitoring. While promising, their routine use remains debated due to guideline inconsistencies, cost, and accessibility. Special focus is given to biomarkers for identifying ISUP grade group 2 cancers suitable for AS. Additionally, the potential of artificial intelligence to improve diagnostic accuracy and risk stratification is examined. By integrating these advancements, this review provides a critical perspective on optimizing AS for more personalized and effective prostate cancer management.

Liver lesion segmentation in ultrasound: A benchmark and a baseline network.

Li J, Zhu L, Shen G, Zhao B, Hu Y, Zhang H, Wang W, Wang Q

pubmed logopapersJul 1 2025
Accurate liver lesion segmentation in ultrasound is a challenging task due to high speckle noise, ambiguous lesion boundaries, and inhomogeneous intensity distribution inside the lesion regions. This work first collected and annotated a dataset for liver lesion segmentation in ultrasound. In this paper, we propose a novel convolutional neural network to learn dual self-attentive transformer features for boosting liver lesion segmentation by leveraging the complementary information among non-local features encoded at different layers of the transformer architecture. To do so, we devise a dual self-attention refinement (DSR) module to synergistically utilize self-attention and reverse self-attention mechanisms to extract complementary lesion characteristics between cascaded multi-layer feature maps, assisting the model to produce more accurate segmentation results. Moreover, we propose a False-Positive-Negative loss to enable our network to further suppress the non-liver-lesion noise at shallow transformer layers and enhance more target liver lesion details into CNN features at deep transformer layers. Experimental results show that our network outperforms state-of-the-art methods quantitatively and qualitatively.

Interstitial-guided automatic clinical tumor volume segmentation network for cervical cancer brachytherapy.

Tan S, He J, Cui M, Gao Y, Sun D, Xie Y, Cai J, Zaki N, Qin W

pubmed logopapersJul 1 2025
Automatic clinical tumor volume (CTV) delineation is pivotal to improving outcomes for interstitial brachytherapy cervical cancer. However, the prominent differences in gray values due to the interstitial needles bring great challenges on deep learning-based segmentation model. In this study, we proposed a novel interstitial-guided segmentation network termed advance reverse guided network (ARGNet) for cervical tumor segmentation with interstitial brachytherapy. Firstly, the location information of interstitial needles was integrated into the deep learning framework via multi-task by a cross-stitch way to share encoder feature learning. Secondly, a spatial reverse attention mechanism is introduced to mitigate the distraction characteristic of needles on tumor segmentation. Furthermore, an uncertainty area module is embedded between the skip connections and the encoder of the tumor segmentation task, which is to enhance the model's capability in discerning ambiguous boundaries between the tumor and the surrounding tissue. Comprehensive experiments were conducted retrospectively on 191 CT scans under multi-course interstitial brachytherapy. The experiment results demonstrated that the characteristics of interstitial needles play a role in enhancing the segmentation, achieving the state-of-the-art performance, which is anticipated to be beneficial in radiotherapy planning.

Measuring kidney stone volume - practical considerations and current evidence from the EAU endourology section.

Grossmann NC, Panthier F, Afferi L, Kallidonis P, Somani BK

pubmed logopapersJul 1 2025
This narrative review provides an overview of the use, differences, and clinical impact of current methods for kidney stone volume assessment. The different approaches to volume measurement are based on noncontrast computed tomography (NCCT). While volume measurement using formulas is sufficient for smaller stones, it tends to overestimate volume for larger or irregularly shaped calculi. In contrast, software-based segmentation significantly improves accuracy and reproducibility, and artificial intelligence based volumetry additionally shows excellent agreement with reference standards while reducing observer variability and measurement time. Moreover, specific CT preparation protocols may further enhance image quality and thus improve measurement accuracy. Clinically, stone volume has proven to be a superior predictor of stone-related events during follow-up, spontaneous stone passage under conservative management, and stone-free rates after shockwave lithotripsy (SWL) and ureteroscopy (URS) compared to linear measurements. Although manual measurement remains practical, its accuracy diminishes for complex or larger stones. Software-based segmentation and volumetry offer higher precision and efficiency but require established standards and broader access to dedicated software for routine clinical use.

Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

Grosu S, Fabritius MP, Winkelmann M, Puhr-Westerheide D, Ingenerf M, Maurus S, Graser A, Schulz C, Knösel T, Cyran CC, Ricke J, Kazmierczak PM, Ingrisch M, Wesp P

pubmed logopapersJul 1 2025
Adenomatous colorectal polyps require endoscopic resection, as opposed to non-adenomatous hyperplastic colorectal polyps. This study aims to evaluate the effect of artificial intelligence (AI)-assisted differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management. Five board-certified radiologists evaluated CT colonography images with colorectal polyps of all sizes and morphologies retrospectively and decided whether the depicted polyps required endoscopic resection. After a primary unassisted reading based on current guidelines, a second reading with access to the classification of a radiomics-based random-forest AI-model labelling each polyp as "non-adenomatous" or "adenomatous" was performed. Performance was evaluated using polyp histopathology as the reference standard. 77 polyps in 59 patients comprising 118 polyp image series (47% supine position, 53% prone position) were evaluated unassisted and AI-assisted by five independent board-certified radiologists, resulting in a total of 1180 readings (subsequent polypectomy: yes or no). AI-assisted readings had higher accuracy (76% +/- 1% vs. 84% +/- 1%), sensitivity (78% +/- 6% vs. 85% +/- 1%), and specificity (73% +/- 8% vs. 82% +/- 2%) in selecting polyps eligible for polypectomy (p < 0.001). Inter-reader agreement was improved in the AI-assisted readings (Fleiss' kappa 0.69 vs. 0.92). AI-based characterisation of colorectal polyps at CT colonography as a second reader might enable a more precise selection of polyps eligible for subsequent endoscopic resection. However, further studies are needed to confirm this finding and histopathologic polyp evaluation is still mandatory. Question This is the first study evaluating the impact of AI-based polyp classification in CT colonography on radiologists' therapy management. Findings Compared with unassisted reading, AI-assisted reading had higher accuracy, sensitivity, and specificity in selecting polyps eligible for polypectomy. Clinical relevance Integrating an AI tool for colorectal polyp classification in CT colonography could further improve radiologists' therapy recommendations.
Page 28 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.