Sort by:
Page 270 of 3423416 results

Fully automated measurement of aortic pulse wave velocity from routine cardiac MRI studies.

Jiang Y, Yao T, Paliwal N, Knight D, Punjabi K, Steeden J, Hughes AD, Muthurangu V, Davies R

pubmed logopapersMay 30 2025
Aortic pulse wave velocity (PWV) is a prognostic biomarker for cardiovascular disease, which can be measured by dividing the aortic path length by the pulse transit time. However, current MRI techniques require special sequences and time-consuming manual analysis. We aimed to fully automate the process using deep learning to measure PWV from standard sequences, facilitating PWV measurement in routine clinical and research scans. A deep learning (DL) model was developed to generate high-resolution 3D aortic segmentations from routine 2D trans-axial SSFP localizer images, and the centerlines of the resulting segmentations were used to estimate the aortic path length. A further DL model was built to automatically segment the ascending and descending aorta in phase contrast images, and pulse transit time was estimated from the sampled flow curves. Quantitative comparison with trained observers was performed for path length, aortic flow segmentation and transit time, either using an external clinical dataset with both localizers and paired 3D images acquired or on a sample of UK Biobank subjects. Potential application to clinical research scans was evaluated on 1053 subjects from the UK Biobank. Aortic path length measurement was accurate with no major difference between the proposed method (125 ± 19 mm) and manual measurement by a trained observer (124 ± 19 mm) (P = 0.88). Automated phase contrast image segmentation was similar to that of a trained observer for both the ascending (Dice vs manual: 0.96) and descending (Dice 0.89) aorta with no major difference in transit time estimation (proposed method = 21 ± 9 ms, manual = 22 ± 9 ms; P = 0.15). 966 of 1053 (92 %) UK Biobank subjects were successfully analyzed, with a median PWV of 6.8 m/s, increasing 27 % per decade of age and 6.5 % higher per 10 mmHg higher systolic blood pressure. We describe a fully automated method for measuring PWV from standard cardiac MRI localizers and a single phase contrast imaging plane. The method is robust and can be applied to routine clinical scans, and could unlock the potential of measuring PWV in large-scale clinical and population studies. All models and deployment codes are available online.

HVAngleEst: A Dataset for End-to-end Automated Hallux Valgus Angle Measurement from X-Ray Images.

Wang Q, Ji D, Wang J, Liu L, Yang X, Zhang Y, Liang J, Liu P, Zhao H

pubmed logopapersMay 30 2025
Accurate measurement of hallux valgus angle (HVA) and intermetatarsal angle (IMA) is essential for diagnosing hallux valgus and determining appropriate treatment strategies. Traditional manual measurement methods, while standardized, are time-consuming, labor-intensive, and subject to evaluator bias. Recent advancements in deep learning have been applied to hallux valgus angle estimation, but the development of effective algorithms requires large, well-annotated datasets. Existing X-ray datasets are typically limited to cropped foot regions images, and only one dataset containing very few samples is publicly available. To address these challenges, we introduce HVAngleEst, the first large-scale, open-access dataset specifically designed for hallux valgus angle estimation. HVAngleEst comprises 1,382 X-ray images from 1,150 patients and includes comprehensive annotations, such as foot localization, hallux valgus angles, and line segments for each phalanx. This dataset enables fully automated, end-to-end hallux valgus angle estimation, reducing manual labor and eliminating evaluator bias.

Machine Learning Models of Voxel-Level [<sup>18</sup>F] Fluorodeoxyglucose Positron Emission Tomography Data Excel at Predicting Progressive Supranuclear Palsy Pathology.

Braun AS, Satoh R, Pham NTT, Singh-Reilly N, Ali F, Dickson DW, Lowe VJ, Whitwell JL, Josephs KA

pubmed logopapersMay 30 2025
To determine whether a machine learning model of voxel level [<sup>18</sup>f]fluorodeoxyglucose positron emission tomography (PET) data could predict progressive supranuclear palsy (PSP) pathology, as well as outperform currently available biomarkers. One hundred and thirty-seven autopsied patients with PSP (n = 42) and other neurodegenerative diseases (n = 95) who underwent antemortem [<sup>18</sup>f]fluorodeoxyglucose PET and 3.0 Tesla magnetic resonance imaging (MRI) scans were analyzed. A linear support vector machine was applied to differentiate pathological groups with sensitivity analyses performed to assess the influence of voxel size and region removal. A radial basis function was also prepared to create a secondary model using the most important voxels. The models were optimized on the main dataset (n = 104), and their performance was compared with the magnetic resonance parkinsonism index measured on MRI in the independent test dataset (n = 33). The model had the highest accuracy (0.91) and F-score (0.86) when voxel size was 6mm. In this optimized model, important voxels for differentiating the groups were observed in the thalamus, midbrain, and cerebellar dentate. The secondary models found the combination of thalamus and dentate to have the highest accuracy (0.89) and F-score (0.81). The optimized secondary model showed the highest accuracy (0.91) and F-scores (0.86) in the test dataset and outperformed the magnetic resonance parkinsonism index (0.81 and 0.70, respectively). The results suggest that glucose hypometabolism in the thalamus and cerebellar dentate have the highest potential for predicting PSP pathology. Our optimized machine learning model outperformed the best currently available biomarker to predict PSP pathology. ANN NEUROL 2025.

Deep learning based motion correction in ultrasound microvessel imaging approach improves thyroid nodule classification.

Saini M, Larson NB, Fatemi M, Alizad A

pubmed logopapersMay 30 2025
To address inter-frame motion artifacts in ultrasound quantitative high-definition microvasculature imaging (qHDMI), we introduced a novel deep learning-based motion correction technique. This approach enables the derivation of more accurate quantitative biomarkers from motion-corrected HDMI images, improving the classification of thyroid nodules. Inter-frame motion, often caused by carotid artery pulsation near the thyroid, can degrade image quality and compromise biomarker reliability, potentially leading to misdiagnosis. Our proposed technique compensates for these motion-induced artifacts, preserving the fine vascular structures critical for accurate biomarker extraction. In this study, we utilized the motion-corrected images obtained through this framework to derive the quantitative biomarkers and evaluated their effectiveness in thyroid nodule classification. We segregated the dataset according to the amount of motion into low and high motion containing cases based on the inter-frame correlation values and performed the thyroid nodule classification for the high motion containing cases and the full dataset. A comprehensive analysis of the biomarker distributions obtained after using the corresponding motion-corrected images demonstrates the significant differences between benign and malignant nodule biomarker characteristics compared to the original motion-containing images. Specifically, the bifurcation angle values derived from the quantitative high-definition microvasculature imaging (qHDMI) become more consistent with the usual trend after motion correction. The classification results demonstrated that sensitivity remained unchanged for groups with less motion, while improved by 9.2% for groups with high motion. These findings highlight that motion correction helps in deriving more accurate biomarkers, which improves the overall classification performance.

A conditional point cloud diffusion model for deformable liver motion tracking via a single arbitrarily-angled x-ray projection.

Xie J, Shao HC, Li Y, Yan S, Shen C, Wang J, Zhang Y

pubmed logopapersMay 30 2025
Deformable liver motion tracking using a single X-ray projection enables real-time motion monitoring and treatment intervention. We introduce a conditional point cloud diffusion model-based framework for accurate and robust liver motion tracking from arbitrarily angled single X-ray projections. We propose a conditional point cloud diffusion model for liver motion tracking (PCD-Liver), which estimates volumetric liver motion by solving deformable vector fields (DVFs) of a prior liver surface point cloud, based on a single X-ray image. It is a patient-specific model of two main components: a rigid alignment model to estimate the liver's overall shifts, and a conditional point cloud diffusion model that further corrects for the liver surface's deformation. Conditioned on the motion-encoded features extracted from a single X-ray projection by a geometry-informed feature pooling layer, the diffusion model iteratively solves detailed liver surface DVFs in a projection angle-agnostic fashion. The liver surface motion solved by PCD-Liver is subsequently fed as the boundary condition into a UNet-based biomechanical model to infer the liver's internal motion to localize liver tumors. A dataset of 10 liver cancer patients was used for evaluation. We used the root mean square error (RMSE) and 95-percentile Hausdorff distance (HD95) metrics to examine the liver point cloud motion estimation accuracy, and the center-of-mass error (COME) to quantify the liver tumor localization error. The mean (±s.d.) RMSE, HD95, and COME of the prior liver or tumor before motion estimation were 8.82 mm (±3.58 mm), 10.84 mm (±4.55 mm), and 9.72 mm (±4.34 mm), respectively. After PCD-Liver's motion estimation, the corresponding values were 3.63 mm (±1.88 mm), 4.29 mm (±1.75 mm), and 3.46 mm (±2.15 mm). Under highly noisy conditions, PCD-Liver maintained stable performance. This study presents an accurate and robust framework for liver deformable motion estimation and tumor localization for image-guided radiotherapy.

Radiomics-based differentiation of upper urinary tract urothelial and renal cell carcinoma in preoperative computed tomography datasets.

Marcon J, Weinhold P, Rzany M, Fabritius MP, Winkelmann M, Buchner A, Eismann L, Jokisch JF, Casuscelli J, Schulz GB, Knösel T, Ingrisch M, Ricke J, Stief CG, Rodler S, Kazmierczak PM

pubmed logopapersMay 30 2025
To investigate a non-invasive radiomics-based machine learning algorithm to differentiate upper urinary tract urothelial carcinoma (UTUC) from renal cell carcinoma (RCC) prior to surgical intervention. Preoperative computed tomography venous-phase datasets from patients that underwent procedures for histopathologically confirmed UTUC or RCC were retrospectively analyzed. Tumor segmentation was performed manually, and radiomic features were extracted according to the International Image Biomarker Standardization Initiative. Features were normalized using z-scores, and a predictive model was developed using the least absolute shrinkage and selection operator (LASSO). The dataset was split into a training cohort (70%) and a test cohort (30%). A total of 236 patients [30.5% female, median age 70.5 years (IQR: 59.5-77), median tumor size 5.8 cm (range: 4.1-8.2 cm)] were included. For differentiating UTUC from RCC, the model achieved a sensitivity of 88.4% and specificity of 81% (AUC: 0.93, radiomics score cutoff: 0.467) in the training cohort. In the validation cohort, the sensitivity was 80.6% and specificity 80% (AUC: 0.87, radiomics score cutoff: 0.601). Subgroup analysis of the validation cohort demonstrated robust performance, particularly in distinguishing clear cell RCC from high-grade UTUC (sensitivity: 84%, specificity: 73.1%, AUC: 0.84) and high-grade from low-grade UTUC (sensitivity: 57.7%, specificity: 88.9%, AUC: 0.68). Limitations include the need for independent validation in future randomized controlled trials (RCTs). Machine learning-based radiomics models can reliably differentiate between RCC and UTUC in preoperative CT imaging. With a suggested performance benefit compared to conventional imaging, this technology might be added to the current preoperative diagnostic workflow. Local ethics committee no. 20-179.

Multi-spatial-attention U-Net: a novel framework for automated gallbladder segmentation on CT images.

Lou H, Wen X, Lin F, Peng Z, Wang Q, Ren R, Xu J, Fan J, Song H, Ji X, Wang H, Sun X, Dong Y

pubmed logopapersMay 30 2025
This study aimed to construct a novel model, Multi-Spatial Attention U-Net (MSAU-Net) by incorporating our proposed Multi-Spatial Attention (MSA) block into the U-Net for the automated segmentation of the gallbladder on CT images. The gallbladder dataset consists of CT images of retrospectively-collected 152 liver cancer patients and corresponding ground truth delineated by experienced physicians. Our proposed MSAU-Net model was transformed into two versions V1(with one Multi-Scale Feature Extraction and Fusion (MSFEF) module in each MSA block) and V2 (with two parallel MSEFE modules in each MSA blcok). The performances of V1 and V2 were evaluated and compared with four other derivatives of U-Net or state-of-the-art models quantitatively using seven commonly-used metrics, and qualitatively by comparison against experienced physicians' assessment. MSAU-Net V1 and V2 models both outperformed the comparative models across most quantitative metrics with better segmentation accuracy and boundary delineation. The optimal number of MSA was three for V1 and two for V2. Qualitative evaluations confirmed that they produced results closer to physicians' annotations. External validation revealed that MSAU-Net V2 exhibited better generalization capability. The MSAU-Net V1 and V2 both exhibited outstanding performance in gallbladder segmentation, demonstrating strong potential for clinical application. The MSA block enhances spatial information capture, improving the model's ability to segment small and complex structures with greater precision. These advantages position the MSAU-Net V1 and V2 as valuable tools for broader clinical adoption.

Imaging-based machine learning to evaluate the severity of ischemic stroke in the middle cerebral artery territory.

Xie G, Gao J, Liu J, Zhou X, Zhao Z, Tang W, Zhang Y, Zhang L, Li K

pubmed logopapersMay 30 2025
This study aims to develop an imaging-based machine learning model for evaluating the severity of ischemic stroke in the middle cerebral artery (MCA) territory. This retrospective study included 173 patients diagnosed with acute ischemic stroke (AIS) in the MCA territory from two centers, with 114 in the training set and 59 in the test set. In the training set, spearman correlation coefficient and multiple linear regression were utilized to analyze the correlation between the CT imaging features of patients prior to treatment and the national institutes of health stroke scale (NIHSS) score. Subsequently, an optimal machine learning algorithm was determined by comparing seven different algorithms. This algorithm was then used to construct a imaging-based prediction model for stroke severity (severe and non-severe). Finally, the model was validated in the test set. After conducting correlation analysis, CT imaging features such as infarction side, basal ganglia area involvement, dense MCA sign, and infarction volume were found to be independently associated with NIHSS score (P < 0.05). The Logistic Regression algorithm was determined to be the optimal method for constructing the prediction model for stroke severity. The area under the receiver operating characteristic curve of the model in both the training set and test set were 0.815 (95% CI: 0.736-0.893) and 0.780 (95% CI: 0.646-0.914), respectively, with accuracies of 0.772 and 0.814. Imaging-based machine learning model can effectively evaluate the severity (severe or non-severe) of ischemic stroke in the MCA territory. Not applicable.

Using Deep learning to Predict Cardiovascular Magnetic Resonance Findings from Echocardiography Videos.

Sahashi Y, Vukadinovic M, Duffy G, Li D, Cheng S, Berman DS, Ouyang D, Kwan AC

pubmed logopapersMay 30 2025
Echocardiography is the most common modality for assessing cardiac structure and function. While cardiac magnetic resonance (CMR) imaging is less accessible, CMR can provide unique tissue characterization including late gadolinium enhancement (LGE), T1 and T2 mapping, and extracellular volume (ECV) which are associated with tissue fibrosis, infiltration, and inflammation. Deep learning has been shown to uncover findings not recognized by clinicians, however it is unknown whether CMR-based tissue characteristics can be derived from echocardiography videos using deep learning. To assess the performance of a deep learning model applied to echocardiography to detect CMR-specific parameters including LGE presence, and abnormal T1, T2 or ECV. In a retrospective single-center study, adult patients with CMRs and echocardiography studies within 30 days were included. A video-based convolutional neural network was trained on echocardiography videos to predict CMR-derived labels including LGE presence, and abnormal T1, T2 or ECV across echocardiography views. The model was also trained to predict presence/absence of wall motion abnormality (WMA) as a positive control for model function. The model performance was evaluated in a held-out test dataset not used for training. The study population included 1,453 adult patients (mean age 56±18 years, 42% female) with 2,556 paired echocardiography studies occurring at a median of 2 days after CMR (interquartile range 2 days prior to 6 days after). The model had high predictive capability for presence of WMA (AUC 0.873 [95%CI 0.816-0.922]) which was used for positive control. However, the model was unable to reliably detect the presence of LGE (AUC 0.699 [0.613-0.780]), abnormal native T1 (AUC 0.614 [0.500-0.715]), T2 0.553 [0.420-0.692], or ECV 0.564 [0.455-0.691]). Deep learning applied to echocardiography accurately identified CMR-based WMA, but was unable to predict tissue characteristics, suggesting that signal for these tissue characteristics may not be present within ultrasound videos, and that the use of CMR for tissue characterization remains essential within cardiology.

Deep learning-driven modality imputation and subregion segmentation to enhance high-grade glioma grading.

Yu J, Liu Q, Xu C, Zhou Q, Xu J, Zhu L, Chen C, Zhou Y, Xiao B, Zheng L, Zhou X, Zhang F, Ye Y, Mi H, Zhang D, Yang L, Wu Z, Wang J, Chen M, Zhou Z, Wang H, Wang VY, Wang E, Xu D

pubmed logopapersMay 30 2025
This study aims to develop a deep learning framework that leverages modality imputation and subregion segmentation to improve grading accuracy in high-grade gliomas. A retrospective analysis was conducted using data from 1,251 patients in the BraTS2021 dataset as the main cohort and 181 clinical cases collected from a medical center between April 2013 and June 2018 (51 years ± 17; 104 males) as the external test set. We propose a PatchGAN-based modality imputation network with an Aggregated Residual Transformer (ART) module combining Transformer self-attention and CNN feature extraction via residual links, paired with a U-Net variant for segmentation. Generative accuracy used PSNR and SSIM for modality conversions, while segmentation performance was measured with DSC and HD95 across necrotic core (NCR), edema (ED), and enhancing tumor (ET) regions. Senior radiologists conducted a comprehensive Likert-based assessment, with diagnostic accuracy evaluated by AUC. Statistical analysis was performed using the Wilcoxon signed-rank test and the DeLong test. The best source-target modality pairs for imputation were T1 to T1ce and T1ce to T2 (p < 0.001). In subregion segmentation, the overall DSC was 0.878 and HD95 was 19.491, with the ET region showing the highest segmentation accuracy (DSC: 0.877, HD95: 12.149). Clinical validation revealed an improvement in grading accuracy by the senior radiologist, with the AUC increasing from 0.718 to 0.913 (P < 0.001) when using the combined imputation and segmentation models. The proposed deep learning framework improves high-grade glioma grading by modality imputation and segmentation, aiding the senior radiologist and offering potential to advance clinical decision-making.
Page 270 of 3423416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.