Sort by:
Page 27 of 45442 results

Fully automatic anatomical landmark localization and trajectory planning for navigated external ventricular drain placement.

de Boer M, van Doormaal JAM, Köllen MH, Bartels LW, Robe PAJT, van Doormaal TPC

pubmed logopapersJul 1 2025
The aim of this study was to develop and validate a fully automatic anatomical landmark localization and trajectory planning method for external ventricular drain (EVD) placement using CT or MRI. The authors used 125 preoperative CT and 137 contrast-enhanced T1-weighted MRI scans to generate 3D surface meshes of patients' skin and ventricular systems. Seven anatomical landmarks were manually annotated to train a neural network for automatic landmark localization. The model's accuracy was assessed by calculating the mean Euclidian distance of predicted landmarks to the ground truth. Kocher's point and EVD trajectories were automatically calculated with the foramen of Monro as the target. Performance was evaluated using Kakarla grades, as assessed by 3 clinicians. Interobserver agreement was measured with Pearson correlation, and scores were aggregated using majority voting. Ordinal linear regressions were used to assess whether modality or placement side had an effect on Kakarla grades. The impact of landmark localization error on the final EVD plan was also evaluated. The automated landmark localization model achieved a mean error of 4.0 mm (SD 2.6 mm). Trajectory planning generated a trajectory for all patients, with a Kakarla grade of 1 in 92.9% of cases. Statistical analyses indicated a strong interobserver agreement and no significant differences between modalities (CT vs MRI) or EVD placement sides. The location of Kocher's point and the target point were significantly correlated to nasion landmark localization error, with median drifts of 9.38 mm (95% CI 1.94-19.16 mm) and 3.91 mm (95% CI 0.18-26.76 mm) for Kocher's point and the target point, respectively. The presented method was efficient and robust for landmark localization and accurate EVD trajectory planning. The short processing time thereby also provides a base for use in emergency settings.

Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound

Yuhao Huang, Yueyue Xu, Haoran Dou, Jiaxiao Deng, Xin Yang, Hongyu Zheng, Dong Ni

arxiv logopreprintJun 30 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.

Brain Tumor Detection through Thermal Imaging and MobileNET

Roham Maiti, Debasmita Bhoumik

arxiv logopreprintJun 30 2025
Brain plays a crucial role in regulating body functions and cognitive processes, with brain tumors posing significant risks to human health. Precise and prompt detection is a key factor in proper treatment and better patient outcomes. Traditional methods for detecting brain tumors, that include biopsies, MRI, and CT scans often face challenges due to their high costs and the need for specialized medical expertise. Recent developments in machine learning (ML) and deep learning (DL) has exhibited strong capabilities in automating the identification and categorization of brain tumors from medical images, especially MRI scans. However, these classical ML models have limitations, such as high computational demands, the need for large datasets, and long training times, which hinder their accessibility and efficiency. Our research uses MobileNET model for efficient detection of these tumors. The novelty of this project lies in building an accurate tumor detection model which use less computing re-sources and runs in less time followed by efficient decision making through the use of image processing technique for accurate results. The suggested method attained an average accuracy of 98.5%.

Using a large language model for post-deployment monitoring of FDA approved AI: pulmonary embolism detection use case.

Sorin V, Korfiatis P, Bratt AK, Leiner T, Wald C, Butler C, Cook CJ, Kline TL, Collins JD

pubmed logopapersJun 30 2025
Artificial intelligence (AI) is increasingly integrated into clinical workflows. The performance of AI in production can diverge from initial evaluations. Post-deployment monitoring (PDM) remains a challenging ingredient of ongoing quality assurance once AI is deployed in clinical production. To develop and evaluate a PDM framework that uses large language models (LLMs) for free-text classification of radiology reports, and human oversight. We demonstrate its application to monitor a commercially vended pulmonary embolism (PE) detection AI (CVPED). We retrospectively analyzed 11,999 CT pulmonary angiography (CTPA) studies performed between 04/30/2023-06/17/2024. Ground truth was determined by combining LLM-based radiology-report classification and the CVPED outputs, with human review of discrepancies. We simulated a daily monitoring framework to track discrepancies between CVPED and the LLM. Drift was defined when discrepancy rate exceeded a fixed 95% confidence interval (CI) for seven consecutive days. The CI and the optimal retrospective assessment period were determined from a stable dataset with consistent performance. We simulated drift by systematically altering CVPED or LLM sensitivity and specificity, and we modeled an approach to detect data shifts. We incorporated a human-in-the-loop selective alerting framework for continuous prospective evaluation and to investigate potential for incremental detection. Of 11,999 CTPAs, 1,285 (10.7%) had PE. Overall, 373 (3.1%) had discrepant classifications between CVPED and LLM. Among 111 CVPED-positive and LLM-negative cases, 29 would have triggered an alert due to the radiologist not interacting with CVPED. Of those, 24 were CVPED false-positives, one was an LLM false-negative, and the framework ultimately identified four true-alerts for incremental PE cases. The optimal retrospective assessment period for drift detection was determined to be two months. A 2-3% decline in model specificity caused a 2-3-fold increase in discrepancies, while a 10% drop in sensitivity was required to produce a similar effect. For example, a 2.5% drop in LLM specificity led to a 1.7-fold increase in CVPED-negative-LLM-positive discrepancies, which would have taken 22 days to detect using the proposed framework. A PDM framework combining LLM-based free-text classification with a human-in-the-loop alerting system can continuously track an image-based AI's performance, alert for performance drift, and provide incremental clinical value.

Cost-effectiveness analysis of artificial intelligence (AI) in earlier detection of liver lesions in cirrhotic patients at risk of hepatocellular carcinoma in Italy.

Maas L, Contreras-Meca C, Ghezzo S, Belmans F, Corsi A, Cant J, Vos W, Bobowicz M, Rygusik M, Laski DK, Annemans L, Hiligsmann M

pubmed logopapersJun 30 2025
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third most common cause of cancer-related death. Cirrhosis is a major contributing factor, accounting for over 90% of HCC cases. With the high mortality rate of HCC, earlier detection of HCC is critical. When added to magnetic resonance imaging (MRI), artificial intelligence (AI) has been shown to improve HCC detection. Nonetheless, to date no cost-effectiveness analyses have been conducted on an AI tool to enhance earlier HCC detection. This study reports on the cost-effectiveness of detection of liver lesions with AI improved MRI in the surveillance for HCC in patients with a cirrhotic liver compared to usual care (UC). The model structure included a decision tree followed by a state-transition Markov model from an Italian healthcare perspective. Lifetime costs and quality-adjusted life years (QALY) were simulated in cirrhotic patients at risk of HCC. One-way sensitivity analyses and two-way sensitivity analyses were performed. Results were presented as incremental cost-effectiveness ratios (ICER). For patients receiving UC, the average lifetime costs per 1,000 patients were €16,604,800 compared to €16,610,250 for patients receiving the AI approach. With a QALY gained of 0.55 and incremental costs of €5,000 for every 1,000 patients, the ICER was €9,888 per QALY gained, indicating cost-effectiveness with the willingness-to-pay threshold of €33,000/QALY gained. Main drivers of cost-effectiveness included the cost and performance (sensitivity and specificity) of the AI tool. This study suggests that an AI-based approach to earlier detect HCC in cirrhotic patients can be cost-effective. By incorporating cost-effective AI-based approaches in clinical practice, patient outcomes and healthcare efficiency are improved.

Comprehensive review of pulmonary embolism imaging: past, present and future innovations in computed tomography (CT) and other diagnostic techniques.

Triggiani S, Pellegrino G, Mortellaro S, Bubba A, Lanza C, Carriero S, Biondetti P, Angileri SA, Fusco R, Granata V, Carrafiello G

pubmed logopapersJun 28 2025
Pulmonary embolism (PE) remains a critical condition that demands rapid and accurate diagnosis, for which computed tomographic pulmonary angiography (CTPA) is widely recognized as the diagnostic gold standard. However, recent advancements in imaging technologies-such as dual-energy computed tomography (DECT), photon-counting CT (PCD-CT), and artificial intelligence (AI)-offer promising enhancements to traditional diagnostic methods. This study reviews past, current and emerging technologies, focusing on their potential to optimize diagnostic accuracy, reduce contrast volumes and radiation doses, and streamline clinical workflows. DECT, with its dual-energy imaging capabilities, enhances image clarity even with lower contrast media volumes, thus reducing patient risk. Meanwhile, PCD-CT has shown potential for dose reduction and superior image resolution, particularly in challenging cases. AI-based tools further augment diagnostic speed and precision by assisting radiologists in image analysis, consequently decreasing workloads and expediting clinical decision-making. Collectively, these innovations hold promise for improved clinical management of PE, enabling not only more accurate diagnoses but also safer, more efficient patient care. Further research is necessary to fully integrate these advancements into routine clinical practice, potentially redefining diagnostic workflows for PE and enhancing patient outcomes.

Deep Learning-Based Automated Detection of the Middle Cerebral Artery in Transcranial Doppler Ultrasound Examinations.

Lee H, Shi W, Mukaddim RA, Brunelle E, Palisetti A, Imaduddin SM, Rajendram P, Incontri D, Lioutas VA, Heldt T, Raju BI

pubmed logopapersJun 28 2025
Transcranial Doppler (TCD) ultrasound has significant clinical value for assessing cerebral hemodynamics, but its reliance on operator expertise limits broader clinical adoption. In this work, we present a lightweight real-time deep learning-based approach capable of automatically identifying the middle cerebral artery (MCA) in TCD Color Doppler images. Two state-of-the-art object detection models, YOLOv10 and Real-Time Detection Transformers (RT-DETR), were investigated for automated MCA detection in real-time. TCD Color Doppler data (41 subjects; 365 videos; 61,611 frames) were collected from neurologically healthy individuals (n = 31) and stroke patients (n = 10). MCA bounding box annotations were performed by clinical experts on all frames. Model training consisted of pretraining utilizing a large abdominal ultrasound dataset followed by subsequent fine-tuning on acquired TCD data. Detection performance at the instance and frame levels, and inference speed were assessed through four-fold cross-validation. Inter-rater agreement between model and two human expert readers was assessed using distance between bounding boxes and inter-rater variability was quantified using the individual equivalence coefficient (IEC) metric. Both YOLOv10 and RT-DETR models showed comparable frame level accuracy for MCA presence, with F1 scores of 0.884 ± 0.023 and 0.884 ± 0.019 respectively. YOLOv10 outperformed RT-DETR for instance-level localization accuracy (AP: 0.817 vs. 0.780) and had considerably faster inference speed on a desktop CPU (11.6 ms vs. 91.14 ms). Furthermore, YOLOv10 showed an average inference time of 36 ms per frame on a tablet device. The IEC was -1.08 with 95 % confidence interval: [-1.45, -0.19], showing that the AI predictions deviated less from each reader than the readers' annotations deviated from each other. Real-time automated detection of the MCA is feasible and can be implemented on mobile platforms, potentially enabling wider clinical adoption by less-trained operators in point-of-care settings.

Reasoning in machine vision: learning to think fast and slow

Shaheer U. Saeed, Yipei Wang, Veeru Kasivisvanathan, Brian R. Davidson, Matthew J. Clarkson, Yipeng Hu, Daniel C. Alexander

arxiv logopreprintJun 27 2025
Reasoning is a hallmark of human intelligence, enabling adaptive decision-making in complex and unfamiliar scenarios. In contrast, machine intelligence remains bound to training data, lacking the ability to dynamically refine solutions at inference time. While some recent advances have explored reasoning in machines, these efforts are largely limited to verbal domains such as mathematical problem-solving, where explicit rules govern step-by-step reasoning. Other critical real-world tasks - including visual perception, spatial reasoning, and radiological diagnosis - require non-verbal reasoning, which remains an open challenge. Here we present a novel learning paradigm that enables machine reasoning in vision by allowing performance improvement with increasing thinking time (inference-time compute), even under conditions where labelled data is very limited. Inspired by dual-process theories of human cognition in psychology, our approach integrates a fast-thinking System I module for familiar tasks, with a slow-thinking System II module that iteratively refines solutions using self-play reinforcement learning. This paradigm mimics human reasoning by proposing, competing over, and refining solutions in data-scarce scenarios. We demonstrate superior performance through extended thinking time, compared not only to large-scale supervised learning but also foundation models and even human experts, in real-world vision tasks. These tasks include computer-vision benchmarks and cancer localisation on medical images across five organs, showcasing transformative potential for non-verbal machine reasoning.

Prospective quality control in chest radiography based on the reconstructed 3D human body.

Tan Y, Ye Z, Ye J, Hou Y, Li S, Liang Z, Li H, Tang J, Xia C, Li Z

pubmed logopapersJun 27 2025
Chest radiography requires effective quality control (QC) to reduce high retake rates. However, existing QC measures are all retrospective and implemented after exposure, often necessitating retakes when image quality fails to meet standards and thereby increasing radiation exposure to patients. To address this issue, we proposed a 3D human body (3D-HB) reconstruction algorithm to realize prospective QC. Our objective was to investigate the feasibility of using the reconstructed 3D-HB for prospective QC in chest radiography and evaluate its impact on retake rates.&#xD;Approach: This prospective study included patients indicated for posteroanterior (PA) and lateral (LA) chest radiography in May 2024. A 3D-HB reconstruction algorithm integrating the SMPL-X model and the HybrIK-X algorithm was proposed to convert patients' 2D images into 3D-HBs. QC metrics regarding patient positioning and collimation were assessed using chest radiographs (reference standard) and 3D-HBs, with results compared using ICCs, linear regression, and receiver operating characteristic curves. For retake rate evaluation, a real-time 3D-HB visualization interface was developed and chest radiography was conducted in two four-week phases: the first without prospective QC and the second with prospective QC. Retake rates between the two phases were compared using chi-square tests. &#xD;Main results: 324 participants were included (mean age, 42 years±19 [SD]; 145 men; 324 PA and 294 LA examinations). The ICCs for the clavicle and midaxillary line angles were 0.80 and 0.78, respectively. Linear regression showed good relation for clavicle angles (R2: 0.655) and midaxillary line angles (R2: 0.616). In PA chest radiography, the AUCs of 3D-HBs were 0.89, 0.87, 0.91 and 0.92 for assessing scapula rotation, lateral tilt, centered positioning and central X-ray alignment respectively, with 97% accuracy in collimation assessment. In LA chest radiography, the AUCs of 3D-HBs were 0.87, 0.84, 0.87 and 0.88 for assessing arms raised, chest rotation, centered positioning and central X-ray alignment respectively, with 94% accuracy in collimation assessment. In retake rate evaluation, 3995 PA and 3295 LA chest radiographs were recorded. The implementation of prospective QC based on the 3D-HB reduced retake rates from 8.6% to 3.5% (PA) and 19.6% to 4.9% (LA) (p < .001).&#xD;Significance: The reconstructed 3D-HB is a feasible tool for prospective QC in chest radiography, providing real-time feedback on patient positioning and collimation before exposure. Prospective QC based on the reconstructed 3D-HB has the potential to reshape the future of radiography QC by significantly reducing retake rates and improving clinical standardization.

Automated Sella-Turcica Annotation and Mesh Alignment of 3D Stereophotographs for Craniosynostosis Patients Using a PCA-FFNN Based Approach.

Bielevelt F, Chargi N, van Aalst J, Nienhuijs M, Maal T, Delye H, de Jong G

pubmed logopapersJun 27 2025
Craniosynostosis, characterized by the premature fusion of cranial sutures, can lead to significant neurological and developmental complications, necessitating early diagnosis and precise treatment. Traditional cranial morphologic assessment has relied on CT scans, which expose infants to ionizing radiation. Recently, 3D stereophotogrammetry has emerged as a noninvasive alternative, but accurately aligning 3D photographs within standardized reference frames, such as the Sella-turcica-Nasion (S-N) frame, remains a challenge. This study proposes a novel method for predicting the Sella turcica (ST) coordinate from 3D cranial surface models using Principal Component Analysis (PCA) combined with a Feedforward Neural Network (FFNN). The accuracy of this method is compared with the conventional Computed Cranial Focal Point (CCFP) method, which has limitations, especially in cases of asymmetric cranial deformations like plagiocephaly. A data set of 153 CT scans, including 68 craniosynostosis subjects, was used to train and test the PCA-FFNN model. The results demonstrate that the PCA-FFNN approach outperforms CCFP, achieving significantly lower deviations in ST coordinate predictions (3.61 vs. 8.38 mm, P<0.001), particularly along the y-axes and z-axes. In addition, mesh realignment within the S-N reference frame showed improved accuracy with the PCA-FFNN method, evidenced by lower mean deviations and reduced dispersion in distance maps. These findings highlight the potential of the PCA-FFNN approach to provide a more reliable, noninvasive solution for cranial assessment, improving craniosynostosis follow-up and enhancing clinical outcomes.
Page 27 of 45442 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.