Sort by:
Page 27 of 75745 results

Integrating Radiomics with Deep Learning Enhances Multiple Sclerosis Lesion Delineation

Nadezhda Alsahanova, Pavel Bartenev, Maksim Sharaev, Milos Ljubisavljevic, Taleb Al. Mansoori, Yauhen Statsenko

arxiv logopreprintJun 17 2025
Background: Accurate lesion segmentation is critical for multiple sclerosis (MS) diagnosis, yet current deep learning approaches face robustness challenges. Aim: This study improves MS lesion segmentation by combining data fusion and deep learning techniques. Materials and Methods: We suggested novel radiomic features (concentration rate and R\'enyi entropy) to characterize different MS lesion types and fused these with raw imaging data. The study integrated radiomic features with imaging data through a ResNeXt-UNet architecture and attention-augmented U-Net architecture. Our approach was evaluated on scans from 46 patients (1102 slices), comparing performance before and after data fusion. Results: The radiomics-enhanced ResNeXt-UNet demonstrated high segmentation accuracy, achieving significant improvements in precision and sensitivity over the MRI-only baseline and a Dice score of 0.774$\pm$0.05; p<0.001 according to Bonferroni-adjusted Wilcoxon signed-rank tests. The radiomics-enhanced attention-augmented U-Net model showed a greater model stability evidenced by reduced performance variability (SDD = 0.18 $\pm$ 0.09 vs. 0.21 $\pm$ 0.06; p=0.03) and smoother validation curves with radiomics integration. Conclusion: These results validate our hypothesis that fusing radiomics with raw imaging data boosts segmentation performance and stability in state-of-the-art models.

BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification with Swin-HAFNet

Amirreza Fateh, Yasin Rezvani, Sara Moayedi, Sadjad Rezvani, Fatemeh Fateh, Mansoor Fateh

arxiv logopreprintJun 17 2025
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, largely due to the lack of high-quality, balanced, and diverse datasets. In this work, we present a new curated MRI dataset designed specifically for brain tumor segmentation and classification tasks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans annotated by certified radiologists and physicians, spanning three major tumor types-glioma, meningioma, and pituitary-as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we propose a transformer-based segmentation model and benchmark it against established baselines. Our method achieves the highest weighted mean Intersection-over-Union (IoU) of 82.3%, with improvements observed across all tumor categories. Importantly, this study serves primarily as an introduction to the dataset, establishing foundational benchmarks for future research. We envision this dataset as a valuable resource for advancing machine learning applications in neuro-oncology, supporting both academic research and clinical decision-support development. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/

DGG-XNet: A Hybrid Deep Learning Framework for Multi-Class Brain Disease Classification with Explainable AI

Sumshun Nahar Eity, Mahin Montasir Afif, Tanisha Fairooz, Md. Mortuza Ahmmed, Md Saef Ullah Miah

arxiv logopreprintJun 17 2025
Accurate diagnosis of brain disorders such as Alzheimer's disease and brain tumors remains a critical challenge in medical imaging. Conventional methods based on manual MRI analysis are often inefficient and error-prone. To address this, we propose DGG-XNet, a hybrid deep learning model integrating VGG16 and DenseNet121 to enhance feature extraction and classification. DenseNet121 promotes feature reuse and efficient gradient flow through dense connectivity, while VGG16 contributes strong hierarchical spatial representations. Their fusion enables robust multiclass classification of neurological conditions. Grad-CAM is applied to visualize salient regions, enhancing model transparency. Trained on a combined dataset from BraTS 2021 and Kaggle, DGG-XNet achieved a test accuracy of 91.33\%, with precision, recall, and F1-score all exceeding 91\%. These results highlight DGG-XNet's potential as an effective and interpretable tool for computer-aided diagnosis (CAD) of neurodegenerative and oncological brain disorders.

Exploring factors driving the evolution of chronic lesions in multiple sclerosis using machine learning.

Hu H, Ye L, Wu P, Shi Z, Chen G, Li Y

pubmed logopapersJun 17 2025
The study aimed to identify factors influencing the evolution of chronic lesions in multiple sclerosis (MS) using a machine learning approach. Longitudinal data were collected from individuals with relapsing-remitting multiple sclerosis (RRMS). The "iron rim" sign was identified using quantitative susceptibility mapping (QSM), and microstructural damage was quantified via T1/fluid attenuated inversion recovery (FLAIR) ratios. Additional data included baseline lesion volume, cerebral T2-hyperintense lesion volume, iron rim lesion volume, the proportion of iron rim lesion volume, gender, age, disease duration (DD), disability and cognitive scores, use of disease-modifying therapy, and follow-up intervals. These features were integrated into machine learning models (logistic regression (LR), random forest (RF), and support vector machine (SVM)) to predict lesion volume change, with the most predictive model selected for feature importance analysis. The study included 47 RRMS individuals (mean age, 30.6 ± 8.0 years [standard deviation], 6 males) and 833 chronic lesions. Machine learning model development results showed that the SVM model demonstrated superior predictive efficiency, with an AUC of 0.90 in the training set and 0.81 in the testing set. Feature importance analysis identified the top three features were the "iron rim" sign of lesions, DD, and the T1/FLAIR ratios of the lesions. This study developed a machine learning model to predict the volume outcome of MS lesions. Feature importance analysis identified chronic inflammation around the lesion, DD, and the microstructural damage as key factors influencing volume change in chronic MS lesions. Question The evolution of different chronic lesions in MS exhibits variability, and the driving factors influencing these outcomes remain to be further investigated. Findings A SVM learning model was developed to predict chronic MS lesion volume changes, integrating lesion characteristics, lesion burden, and clinical data. Clinical relevance Chronic inflammation surrounding lesions, DD, and microstructural damage are key factors influencing the evolution of chronic MS lesions.

NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification

Wajih Hassan Raza, Aamir Bader Shah, Yu Wen, Yidan Shen, Juan Diego Martinez Lemus, Mya Caryn Schiess, Timothy Michael Ellmore, Renjie Hu, Xin Fu

arxiv logopreprintJun 17 2025
The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.

Recognition and diagnosis of Alzheimer's Disease using T1-weighted magnetic resonance imaging via integrating CNN and Swin vision transformer.

Wang Y, Sheng H, Wang X

pubmed logopapersJun 17 2025
Alzheimer's disease is a debilitating neurological disorder that requires accurate diagnosis for the most effective therapy and care. This article presents a new vision transformer model specifically created to evaluate magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative dataset in order to categorize cases of Alzheimer's disease. Contrary to models that rely on convolutional neural networks, the vision transformer has the ability to capture large relationships between far-apart pixels in the images. The suggested architecture has shown exceptional outcomes, as its precision has emphasized its capacity to detect and distinguish significant characteristics from MRI scans, hence enabling the precise classification of Alzheimer's disease subtypes and various stages. The model utilizes both the elements from convolutional neural network and vision transformer models to extract both local and global visual patterns, facilitating the accurate categorization of various Alzheimer's disease classifications. We specifically focus on the term 'dementia in patients with Alzheimer's disease' to describe individuals who have progressed to the dementia stage as a result of AD, distinguishing them from those in earlier stages of the disease. Precise categorization of Alzheimer's disease has significant therapeutic importance, as it enables timely identification, tailored treatment strategies, disease monitoring, and prognostic assessment. The stated high accuracy indicates that the suggested vision transformer model has the capacity to assist healthcare providers and researchers in generating well-informed and precise evaluations of individuals with Alzheimer's disease.

Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.

Wang Y, Xiong H, Sun K, Bai S, Dai L, Ding Z, Liu J, Wang Q, Liu Q, Shen D

pubmed logopapersJun 17 2025
Multimodal brain magnetic resonance imaging (MRI) offers complementary insights into brain structure and function, thereby improving the diagnostic accuracy of neurological disorders and advancing brain-related research. However, the widespread applicability of MRI is substantially limited by restricted scanner accessibility and prolonged acquisition times. Here, we present TUMSyn, a text-guided universal MRI synthesis model capable of generating brain MRI specified by textual imaging metadata from routinely acquired scans. We ensure the reliability of TUMSyn by constructing a brain MRI database comprising 31,407 3D images across 7 MRI modalities from 13 worldwide centers and pre-training an MRI-specific text encoder to process text prompts effectively. Experiments on diverse datasets and physician assessments indicate that TUMSyn-generated images can be utilized along with acquired MRI scan(s) to facilitate large-scale MRI-based screening and diagnosis of multiple brain diseases, substantially reducing the time and cost of MRI in the healthcare system.

Integration of MRI radiomics and germline genetics to predict the IDH mutation status of gliomas.

Nakase T, Henderson GA, Barba T, Bareja R, Guerra G, Zhao Q, Francis SS, Gevaert O, Kachuri L

pubmed logopapersJun 16 2025
The molecular profiling of gliomas for isocitrate dehydrogenase (IDH) mutations currently relies on resected tumor samples, highlighting the need for non-invasive, preoperative biomarkers. We investigated the integration of glioma polygenic risk scores (PRS) and radiographic features for prediction of IDH mutation status. We used 256 radiomic features, a glioma PRS and demographic information in 158 glioma cases within elastic net and neural network models. The integration of glioma PRS with radiomics increased the area under the receiver operating characteristic curve (AUC) for distinguishing IDH-wildtype vs. IDH-mutant glioma from 0.83 to 0.88 (P<sub>ΔAUC</sub> = 6.9 × 10<sup>-5</sup>) in the elastic net model and from 0.91 to 0.92 (P<sub>ΔAUC</sub> = 0.32) in the neural network model. Incorporating age at diagnosis and sex further improved the classifiers (elastic net: AUC = 0.93, neural network: AUC = 0.93). Patients predicted to have IDH-mutant vs. IDH-wildtype tumors had significantly lower mortality risk (hazard ratio (HR) = 0.18, 95% CI: 0.08-0.40, P = 2.1 × 10<sup>-5</sup>), comparable to prognostic trajectories for biopsy-confirmed IDH status. The augmentation of imaging-based classifiers with genetic risk profiles may help delineate molecular subtypes and improve the timely, non-invasive clinical assessment of glioma patients.

Real-time cardiac cine MRI: A comparison of a diffusion probabilistic model with alternative state-of-the-art image reconstruction techniques for undersampled spiral acquisitions.

Schad O, Heidenreich JF, Petri N, Kleineisel J, Sauer S, Bley TA, Nordbeck P, Petritsch B, Wech T

pubmed logopapersJun 16 2025
Electrocardiogram (ECG)-gated cine imaging in breath-hold enables high-quality diagnostics in most patients but can be compromised by arrhythmia and inability to hold breath. Real-time cardiac MRI offers faster and robust exams without these limitations. To achieve sufficient acceleration, advanced reconstruction methods, which transfer data into high-quality images, are required. In this study, undersampled spiral balanced SSFP (bSSFP) real-time data in free-breathing were acquired at 1.5T in 16 healthy volunteers and five arrhythmic patients, with ECG-gated Cartesian cine in breath-hold serving as clinical reference. Image reconstructions were performed using a tailored and specifically trained score-based diffusion model, compared to a variational network and different compressed sensing approaches. The techniques were assessed using an expert reader study, scalar metric calculations, difference images against a segmented reference, and Bland-Altman analysis of cardiac functional parameters. In participants with irregular RR-cycles, spiral real-time acquisitions showed superior image quality compared to the clinical reference. Quantitative and qualitative metrics indicate enhanced image quality of the diffusion model in comparison to the alternative reconstruction methods, although improvements over the variational network were minor. Slightly higher ejection fractions for the real-time diffusion reconstructions were exhibited relative to the clinical references with a bias of 1.1 ± 5.7% for healthy subjects. The proposed real-time technique enables free-breathing acquisitions of spatio-temporal images with high quality, covering the entire heart in less than 1 min. Evaluation of ejection fraction using the ECG-gated reference can be vulnerable to arrhythmia and averaging effects, highlighting the need for real-time approaches. Prolonged inference times and stochastic variability of the diffusion reconstruction represent obstacles to overcome for clinical translation.

Think deep in the tractography game: deep learning for tractography computing and analysis.

Zhang F, Théberge A, Jodoin PM, Descoteaux M, O'Donnell LJ

pubmed logopapersJun 16 2025
Tractography is a challenging process with complex rules, driving continuous algorithmic evolution to address its challenges. Meanwhile, deep learning has tackled similarly difficult tasks, such as mastering the Go board game and animating sophisticated robots. Given its transformative impact in these areas, deep learning has the potential to revolutionize tractography within the framework of existing rules. This work provides a brief summary of recent advances and challenges in deep learning-based tractography computing and analysis.
Page 27 of 75745 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.