Sort by:
Page 26 of 33324 results

Impact of sarcopenia and obesity on mortality in older adults with SARS-CoV-2 infection: automated deep learning body composition analysis in the NAPKON-SUEP cohort.

Schluessel S, Mueller B, Tausendfreund O, Rippl M, Deissler L, Martini S, Schmidmaier R, Stoecklein S, Ingrisch M, Blaschke S, Brandhorst G, Spieth P, Lehnert K, Heuschmann P, de Miranda SMN, Drey M

pubmed logopapersMay 16 2025
Severe respiratory infections pose a major challenge in clinical practice, especially in older adults. Body composition analysis could play a crucial role in risk assessment and therapeutic decision-making. This study investigates whether obesity or sarcopenia has a greater impact on mortality in patients with severe respiratory infections. The study focuses on the National Pandemic Cohort Network (NAPKON-SUEP) cohort, which includes patients over 60 years of age with confirmed severe COVID-19 pneumonia. An innovative approach was adopted, using pre-trained deep learning models for automated analysis of body composition based on routine thoracic CT scans. The study included 157 hospitalized patients (mean age 70 ± 8 years, 41% women, mortality rate 39%) from the NAPKON-SUEP cohort at 57 study sites. A pre-trained deep learning model was used to analyze body composition (muscle, bone, fat, and intramuscular fat volumes) from thoracic CT images of the NAPKON-SUEP cohort. Binary logistic regression was performed to investigate the association between obesity, sarcopenia, and mortality. Non-survivors exhibited lower muscle volume (p = 0.043), higher intramuscular fat volume (p = 0.041), and a higher BMI (p = 0.031) compared to survivors. Among all body composition parameters, muscle volume adjusted to weight was the strongest predictor of mortality in the logistic regression model, even after adjusting for factors such as sex, age, diabetes, chronic lung disease and chronic kidney disease, (odds ratio = 0.516). In contrast, BMI did not show significant differences after adjustment for comorbidities. This study identifies muscle volume derived from routine CT scans as a major predictor of survival in patients with severe respiratory infections. The results underscore the potential of AI supported CT-based body composition analysis for risk stratification and clinical decision making, not only for COVID-19 patients but also for all patients over 60 years of age with severe acute respiratory infections. The innovative application of pre-trained deep learning models opens up new possibilities for automated and standardized assessment in clinical practice.

Automated CT segmentation for lower extremity tissues in lymphedema evaluation using deep learning.

Na S, Choi SJ, Ko Y, Urooj B, Huh J, Cha S, Jung C, Cheon H, Jeon JY, Kim KW

pubmed logopapersMay 16 2025
Clinical assessment of lymphedema, particularly for lymphedema severity and fluid-fibrotic lesions, remains challenging with traditional methods. We aimed to develop and validate a deep learning segmentation tool for automated tissue component analysis in lower extremity CT scans. For development datasets, lower extremity CT venography scans were collected in 118 patients with gynecologic cancers for algorithm training. Reference standards were created by segmentation of fat, muscle, and fluid-fibrotic tissue components using 3D slicer. A deep learning model based on the Unet++ architecture with an EfficientNet-B7 encoder was developed and trained. Segmentation accuracy of the deep learning model was validated in an internal validation set (n = 10) and an external validation set (n = 10) using Dice similarity coefficient (DSC) and volumetric similarity (VS). A graphical user interface (GUI) tool was developed for the visualization of the segmentation results. Our deep learning algorithm achieved high segmentation accuracy. Mean DSCs for each component and all components ranged from 0.945 to 0.999 in the internal validation set and 0.946 to 0.999 in the external validation set. Similar performance was observed in the VS, with mean VSs for all components ranging from 0.97 to 0.999. In volumetric analysis, mean volumes of the entire leg and each component did not differ significantly between reference standard and deep learning measurements (p > 0.05). Our GUI displays lymphedema mapping, highlighting segmented fat, muscle, and fluid-fibrotic components in the entire leg. Our deep learning algorithm provides an automated segmentation tool enabling accurate segmentation, volume measurement of tissue component, and lymphedema mapping. Question Clinical assessment of lymphedema remains challenging, particularly for tissue segmentation and quantitative severity evaluation. Findings A deep learning algorithm achieved DSCs > 0.95 and VS > 0.97 for fat, muscle, and fluid-fibrotic components in internal and external validation datasets. Clinical relevance The developed deep learning tool accurately segments and quantifies lower extremity tissue components on CT scans, enabling automated lymphedema evaluation and mapping with high segmentation accuracy.

Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images.

Douglas Z, Rahman A, Duggar WN, Wang H

pubmed logopapersMay 15 2025
Medical imaging constitutes critical information in the diagnostic and prognostic evaluation of patients, as it serves to uncover a broad spectrum of pathologies and deviances. Clinical practitioners who carry out medical image screening are primarily reliant on their knowledge and experience for disease diagnosis. Convolutional Neural Networks (CNNs) hold the potential to serve as a formidable decision-support tool in the realm of medical image analysis due to their high capacity to extract hierarchical features and effectuate direct classification and segmentation from image data. However, CNNs contain a myriad of hyperparameters and optimizing these hyperparameters poses a major obstacle to the effective implementation of CNNs. In this work, a two-phase Bayesian Optimization-derived Scheduling (BOS) approach is proposed for hyperparameter optimization for the head and cancerous tissue segmentation tasks. We proposed this two-phase BOS approach to incorporate both rapid convergences in the first training phase and slower (but without overfitting) improvements in the last training phase. Furthermore, we found that batch size and learning rate have a significant impact on the training process, but optimizing them separately can lead to sub-optimal hyperparameter combinations. Therefore, batch size and learning rate have been coupled as the batch size to learning rate (B2L) ratio and utilized in the optimization process to optimize both simultaneously. The optimized hyperparameters have been tested for a three-dimensional V-Net model with computed tomography (CT) and positron emission tomography (PET) scans to segment and classify cancerous and noncancerous tissues. The results of 10-fold cross-validation indicate that the optimal batch size to learning rate (B2L) ratio for each phase of the training method can improve the overall medical image segmentation performance.

Data-Agnostic Augmentations for Unknown Variations: Out-of-Distribution Generalisation in MRI Segmentation

Puru Vaish, Felix Meister, Tobias Heimann, Christoph Brune, Jelmer M. Wolterink

arxiv logopreprintMay 15 2025
Medical image segmentation models are often trained on curated datasets, leading to performance degradation when deployed in real-world clinical settings due to mismatches between training and test distributions. While data augmentation techniques are widely used to address these challenges, traditional visually consistent augmentation strategies lack the robustness needed for diverse real-world scenarios. In this work, we systematically evaluate alternative augmentation strategies, focusing on MixUp and Auxiliary Fourier Augmentation. These methods mitigate the effects of multiple variations without explicitly targeting specific sources of distribution shifts. We demonstrate how these techniques significantly improve out-of-distribution generalization and robustness to imaging variations across a wide range of transformations in cardiac cine MRI and prostate MRI segmentation. We quantitatively find that these augmentation methods enhance learned feature representations by promoting separability and compactness. Additionally, we highlight how their integration into nnU-Net training pipelines provides an easy-to-implement, effective solution for enhancing the reliability of medical segmentation models in real-world applications.

Uncertainty Co-estimator for Improving Semi-Supervised Medical Image Segmentation.

Zeng X, Xiong S, Xu J, Du G, Rong Y

pubmed logopapersMay 15 2025
Recently, combining the strategy of consistency regularization with uncertainty estimation has shown promising performance on semi-supervised medical image segmentation tasks. However, most existing methods estimate the uncertainty solely based on the outputs of a single neural network, which results in imprecise uncertainty estimations and eventually degrades the segmentation performance. In this paper, we propose a novel Uncertainty Co-estimator (UnCo) framework to deal with this problem. Inspired by the co-training technique, UnCo establishes two different mean-teacher modules (i.e., two pairs of teacher and student models), and estimates three types of uncertainty from the multi-source predictions generated by these models. Through combining these uncertainties, their differences will help to filter out incorrect noise in each estimate, thus allowing the final fused uncertainty maps to be more accurate. These resulting maps are then used to enhance a cross-consistency regularization imposed between the two modules. In addition, UnCo also designs an internal consistency regularization within each module, so that the student models can aggregate diverse feature information from both modules, thus promoting the semi-supervised segmentation performance. Finally, an adversarial constraint is introduced to maintain the model diversity. Experimental results on four medical image datasets indicate that UnCo can achieve new state-of-the-art performance on both 2D and 3D semi-supervised segmentation tasks. The source code will be available at https://github.com/z1010x/UnCo.

A monocular endoscopic image depth estimation method based on a window-adaptive asymmetric dual-branch Siamese network.

Chong N, Yang F, Wei K

pubmed logopapersMay 15 2025
Minimally invasive surgery involves entering the body through small incisions or natural orifices, using a medical endoscope for observation and clinical procedures. However, traditional endoscopic images often suffer from low texture and uneven illumination, which can negatively impact surgical and diagnostic outcomes. To address these challenges, many researchers have applied deep learning methods to enhance the processing of endoscopic images. This paper proposes a monocular medical endoscopic image depth estimation method based on a window-adaptive asymmetric dual-branch Siamese network. In this network, one branch focuses on processing global image information, while the other branch concentrates on local details. An improved lightweight Squeeze-and-Excitation (SE) module is added to the final layer of each branch, dynamically adjusting the inter-channel weights through self-attention. The outputs from both branches are then integrated using a lightweight cross-attention feature fusion module, enabling cross-branch feature interaction and enhancing the overall feature representation capability of the network. Extensive ablation and comparative experiments were conducted on medical datasets (EAD2019, Hamlyn, M2caiSeg, UCL) and a non-medical dataset (NYUDepthV2), with both qualitative and quantitative results-measured in terms of RMSE, AbsRel, FLOPs and running time-demonstrating the superiority of the proposed model. Additionally, comparisons with CT images show good organ boundary matching capability, highlighting the potential of our method for clinical applications. The key code of this paper is available at: https://github.com/superchongcnn/AttenAdapt_DE .

Modifying the U-Net's Encoder-Decoder Architecture for Segmentation of Tumors in Breast Ultrasound Images.

Derakhshandeh S, Mahloojifar A

pubmed logopapersMay 15 2025
Segmentation is one of the most significant steps in image processing. Segmenting an image is a technique that makes it possible to separate a digital image into various areas based on the different characteristics of pixels in the image. In particular, the segmentation of breast ultrasound images is widely used for cancer identification. As a result of image segmentation, it is possible to make early diagnoses of a diseases via medical images in a very effective way. Due to various ultrasound artifacts and noises, including speckle noise, low signal-to-noise ratio, and intensity heterogeneity, the process of accurately segmenting medical images, such as ultrasound images, is still a challenging task. In this paper, we present a new method to improve the accuracy and effectiveness of breast ultrasound image segmentation. More precisely, we propose a neural network (NN) based on U-Net and an encoder-decoder architecture. By taking U-Net as the basis, both the encoder and decoder parts are developed by combining U-Net with other deep neural networks (Res-Net and MultiResUNet) and introducing a new approach and block (Co-Block), which preserve as much as possible the low-level and the high-level features. The designed network is evaluated using the Breast Ultrasound Images (BUSI) Dataset. It consists of 780 images, and the images are categorized into three classes, which are normal, benign, and malignant. According to our extensive evaluations on a public breast ultrasound dataset, the designed network segments the breast lesions more accurately than other state-of-the-art deep learning methods. With only 8.88 M parameters, our network (CResU-Net) obtained 82.88%, 77.5%, 90.3%, and 98.4% in terms of Dice similarity coefficients (DSC), intersection over union (IoU), area under curve (AUC), and global accuracy (ACC), respectively, on the BUSI dataset.

Segmentation of the thoracolumbar fascia in ultrasound imaging: a deep learning approach.

Bonaldi L, Pirri C, Giordani F, Fontanella CG, Stecco C, Uccheddu F

pubmed logopapersMay 15 2025
Only in recent years it has been demonstrated that the thoracolumbar fascia is involved in low back pain (LBP), thus highlighting its implications for treatments. Furthermore, an easily accessible and non-invasive way to investigate the fascia in real time is the ultrasound examination, which to be reliable as is, it must overcome the challenges related to the configuration of the machine and the experience of the operator. Therefore, the lack of a clear understanding of the fascial system combined with the penalty related to the setting of the ultrasound acquisition has generated a gap that makes its effective evaluation difficult during clinical routine. The aim of the present work is to fill this gap by investigating the effectiveness of using a deep learning approach to segment the thoracolumbar fascia from ultrasound imaging. A total of 538 ultrasound images of the thoracolumbar fascia of LBP subjects were finally used to train and test a deep learning network. An additional test set (so-called Test set 2) was collected from another center, operator, machine manufacturer, patient cohort, and protocol to improve the generalizability of the study. A U-Net-based architecture was demonstrated to be able to segment these structures with a final training accuracy of 0.99 and a validation accuracy of 0.91. The accuracy of the prediction computed on a test set (87 images not included in the training set) reached the 0.94, with a mean intersection over union index of 0.82 and a Dice-score of 0.76. These latter metrics were outperformed by those in Test set 2. The validity of the predictions was also verified and confirmed by two expert clinicians. Automatic identification of the thoracolumbar fascia has shown promising results to thoroughly investigate its alteration and target a personalized rehabilitation intervention based on each patient-specific scenario.

Texture-based probability mapping for automatic assessment of myocardial injury in late gadolinium enhancement images after revascularized STEMI.

Frøysa V, Berg GJ, Singsaas E, Eftestøl T, Woie L, Ørn S

pubmed logopapersMay 15 2025
Late Gadolinium-enhancement in cardiac magnetic resonance imaging (LGE-CMR) is the gold standard for assessing myocardial infarction (MI) size. Texture-based probability mapping (TPM) is a novel machine learning-based analysis of LGE images of myocardial injury. The ability of TPM to assess acute myocardial injury has not been determined. This proof-of-concept study aimed to determine how TPM responds to the dynamic changes in myocardial injury during one-year follow-up after a first-time revascularized acute MI. 41 patients with first-time acute ST-elevation MI and single-vessel occlusion underwent successful PCI. LGE-CMR images were obtained 2 days, 1 week, 2 months, and 1 year following MI. TPM size was compared with manual LGE-CMR based MI size, LV remodeling, and biomarkers. TPM size remained larger than MI by LGE-CMR at all time points, decreasing from 2 days to 2 months (p < 0.001) but increasing from 2 months to 1 year (p < 0.01). TPM correlated strongly with peak Troponin T (p < 0.001) and NT-proBNP (p < 0.001). At 1 week, 2 months, and 1 year, TPM showed a stronger correlation with NT-proBNP than MI size by LGE-CMR. Analyzing all collected pixels from 2 months to 1 year revealed a general increase in pixel scar probability in both the infarcted and non-infarcted regions. This proof-of-concept study suggests that TPM may offer additional insights into myocardial alterations in both infarcted and non-infarcted regions following acute MI. These findings indicate a potential role for TPM in assessing the overall myocardial response to infarction and the subsequent healing and remodeling process.

Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images.

Reka S, Praba TS, Prasanna M, Reddy VNN, Amirtharajan R

pubmed logopapersMay 15 2025
PCOS (Poly-Cystic Ovary Syndrome) is a multifaceted disorder that often affects the ovarian morphology of women of their reproductive age, resulting in the development of numerous cysts on the ovaries. Ultrasound imaging typically diagnoses PCOS, which helps clinicians assess the size, shape, and existence of cysts in the ovaries. Nevertheless, manual ultrasound image analysis is often challenging and time-consuming, resulting in inter-observer variability. To effectively treat PCOS and prevent its long-term effects, prompt and accurate diagnosis is crucial. In such cases, a prediction model based on deep learning can help physicians by streamlining the diagnosis procedure, reducing time and potential errors. This article proposes a novel integrated approach, QEI-SAM (Quality Enhanced Image - Segment Anything Model), for enhancing image quality and ovarian cyst segmentation for accurate prediction. GAN (Generative Adversarial Networks) and CNN (Convolutional Neural Networks) are the most recent cutting-edge innovations that have supported the system in attaining the expected result. The proposed QEI-SAM model used Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) for image enhancement to increase the resolution, sharpening the edges and restoring the finer structure of the ultrasound ovary images and achieved a better SSIM of 0.938, PSNR value of 38.60 and LPIPS value of 0.0859. Then, it incorporates the Segment Anything Model (SAM) to segment ovarian cysts and achieve the highest Dice coefficient of 0.9501 and IoU score of 0.9050. Furthermore, Convolutional Neural Network - ResNet 50, ResNet 101, VGG 16, VGG 19, AlexNet and Inception v3 have been implemented to diagnose PCOS promptly. Finally, VGG 19 has achieved the highest accuracy of 99.31%.
Page 26 of 33324 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.