Sort by:
Page 26 of 31309 results

Leveraging deep learning-based kernel conversion for more precise airway quantification on CT.

Choe J, Yun J, Kim MJ, Oh YJ, Bae S, Yu D, Seo JB, Lee SM, Lee HY

pubmed logopapersMay 22 2025
To evaluate the variability of fully automated airway quantitative CT (QCT) measures caused by different kernels and the effect of kernel conversion. This retrospective study included 96 patients who underwent non-enhanced chest CT at two centers. CT scans were reconstructed using four kernels (medium soft, medium sharp, sharp, very sharp) from three vendors. Kernel conversion targeting the medium soft kernel as reference was applied to sharp kernel images. Fully automated airway quantification was performed before and after conversion. The effects of kernel type and conversion on airway quantification were evaluated using analysis of variance, paired t-tests, and concordance correlation coefficient (CCC). Airway QCT measures (e.g., Pi10, wall thickness, wall area percentage, lumen diameter) decreased with sharper kernels (all, p < 0.001), with varying degrees of variability across variables and vendors. Kernel conversion substantially reduced variability between medium soft and sharp kernel images for vendors A (pooled CCC: 0.59 vs. 0.92) and B (0.40 vs. 0.91) and lung-dedicated sharp kernels of vendor C (0.26 vs. 0.71). However, it was ineffective for non-lung-dedicated sharp kernels of vendor C (0.81 vs. 0.43) and showed limited improvement in variability of QCT measures at the subsegmental level. Consistent airway segmentation and identical anatomic labeling improved subsegmental airway variability in theoretical tests. Deep learning-based kernel conversion reduced the measurement variability of airway QCT across various kernels and vendors but was less effective for non-lung-dedicated kernels and subsegmental airways. Consistent airway segmentation and precise anatomic labeling can further enhance reproducibility for reliable automated quantification. Question How do different CT reconstruction kernels affect the measurement variability of automated airway measurements, and can deep learning-based kernel conversion reduce this variability? Findings Kernel conversion improved measurement consistency across vendors for lung-dedicated kernels, but showed limited effectiveness for non-lung-dedicated kernels and subsegmental airways. Clinical relevance Understanding kernel-related variability in airway quantification and mitigating it through deep learning enables standardized analysis, but further refinements are needed for robust airway segmentation, particularly for improving measurement variability in subsegmental airways and specific kernels.

DP-MDM: detail-preserving MR reconstruction via multiple diffusion models.

Geng M, Zhu J, Hong R, Liu Q, Liang D, Liu Q

pubmed logopapersMay 22 2025
<i>Objective.</i>Magnetic resonance imaging (MRI) is critical in medical diagnosis and treatment by capturing detailed features, such as subtle tissue changes, which help clinicians make precise diagnoses. However, the widely used single diffusion model has limitations in accurately capturing more complex details. This study aims to address these limitations by proposing an efficient method to enhance the reconstruction of detailed features in MRI.<i>Approach.</i>We present a detail-preserving reconstruction method that leverages multiple diffusion models (DP-MDM) to extract structural and detailed features in the k-space domain, which complements the image domain. Since high-frequency information in k-space is more systematically distributed around the periphery compared to the irregular distribution of detailed features in the image domain, this systematic distribution allows for more efficient extraction of detailed features. To further reduce redundancy and enhance model performance, we introduce virtual binary masks with adjustable circular center windows that selectively focus on high-frequency regions. These masks align with the frequency distribution of k-space data, enabling the model to focus more efficiently on high-frequency information. The proposed method employs a cascaded architecture, where the first diffusion model recovers low-frequency structural components, with subsequent models enhancing high-frequency details during the iterative reconstruction stage.<i>Main results.</i>Experimental results demonstrate that DP-MDM achieves superior performance across multiple datasets. On the<i>T1-GE brain</i>dataset with 2D random sampling at<i>R</i>= 15, DP-MDM achieved 35.14 dB peak signal-to-noise ratio (PSNR) and 0.8891 structural similarity (SSIM), outperforming other methods. The proposed method also showed robust performance on the<i>Fast-MRI</i>and<i>Cardiac MR</i>datasets, achieving the highest PSNR and SSIM values.<i>Significance.</i>DP-MDM significantly advances MRI reconstruction by balancing structural integrity and detail preservation. It not only enhances diagnostic accuracy through improved image quality but also offers a versatile framework that can potentially be extended to other imaging modalities, thereby broadening its clinical applicability.

High-resolution deep learning reconstruction to improve the accuracy of CT fractional flow reserve.

Tomizawa N, Fan R, Fujimoto S, Nozaki YO, Kawaguchi YO, Takamura K, Hiki M, Aikawa T, Takahashi N, Okai I, Okazaki S, Kumamaru KK, Minamino T, Aoki S

pubmed logopapersMay 22 2025
This study aimed to compare the diagnostic performance of CT-derived fractional flow reserve (CT-FFR) using model-based iterative reconstruction (MBIR) and high-resolution deep learning reconstruction (HR-DLR) images to detect functionally significant stenosis with invasive FFR as the reference standard. This single-center retrospective study included 79 consecutive patients (mean age, 70 ± 11 [SD] years; 57 male) who underwent coronary CT angiography followed by invasive FFR between February 2022 and March 2024. CT-FFR was calculated using a mesh-free simulation. The cutoff for functionally significant stenosis was defined as FFR ≤ 0.80. CT-FFR was compared with MBIR and HR-DLR using receiver operating characteristic curve analysis. The mean invasive FFR value was 0.81 ± 0.09, and 46 of 98 vessels (47%) had FFR ≤ 0.80. The mean noise of HR-DLR was lower than that of MBIR (14.4 ± 1.7 vs 23.5 ± 3.1, p < 0.001). The area under the receiver operating characteristic curve for the diagnosis of functionally significant stenosis of HR-DLR (0.88; 95% CI: 0.80, 0.95) was higher than that of MBIR (0.76; 95% CI: 0.67, 0.86; p = 0.003). The diagnostic accuracy of HR-DLR (88%; 86 of 98 vessels; 95% CI: 80, 94) was higher than that of MBIR (70%; 69 of 98 vessels; 95% CI: 60, 79; p < 0.001). HR-DLR improves image quality and the diagnostic performance of CT-FFR for the diagnosis of functionally significant stenosis. Question The effect of HR-DLR on the diagnostic performance of CT-FFR has not been investigated. Findings HR-DLR improved the diagnostic performance of CT-FFR over MBIR for the diagnosis of functionally significant stenosis as assessed by invasive FFR. Clinical relevance HR-DLR would further enhance the clinical utility of CT-FFR in diagnosing the functional significance of coronary stenosis.

Cross-Scale Texture Supplementation for Reference-based Medical Image Super-Resolution.

Li Y, Hao W, Zeng H, Wang L, Xu J, Routray S, Jhaveri RH, Gadekallu TR

pubmed logopapersMay 22 2025
Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its resolution is often limited by acquisition time constraints, potentially compromising diagnostic accuracy. Reference-based Image Super-Resolution (RefSR) has shown promising performance in addressing such challenges by leveraging external high-resolution (HR) reference images to enhance the quality of low-resolution (LR) images. The core objective of RefSR is to accurately establish correspondences between the reference HR image and the LR images. In pursuit of this objective, this paper develops a Self-rectified Texture Supplementation network for RefSR (STS-SR) to enhance fine details in MRI images and support the expanding role of autonomous AI in healthcare. Our network comprises a texture-specified selfrectified feature transfer module and a cross-scale texture complementary network. The feature transfer module employs highfrequency filtering to facilitate the network concentrating on fine details. To better exploit the information from both the reference and LR images, our cross-scale texture complementary module incorporates the All-ViT and Swin Transformer layers to achieve feature aggregation at multiple scales, which enables high-quality image enhancement that is critical for autonomous AI systems in healthcare to make accurate decisions. Extensive experiments are performed across various benchmark datasets. The results validate the effectiveness of our method and demonstrate that the method produces state-of-the-art performance as compared to existing approaches. This advancement enables autonomous AI systems to utilize high-quality MRI images for more accurate diagnostics and reliable predictions.

Deep Learning Image Reconstruction (DLIR) Algorithm to Maintain High Image Quality and Diagnostic Accuracy in Quadruple-low CT Angiography of Children with Pulmonary Sequestration: A Case Control Study.

Li H, Zhang Y, Hua S, Sun R, Zhang Y, Yang Z, Peng Y, Sun J

pubmed logopapersMay 22 2025
CT angiography (CTA) is a commonly used clinical examination to detect abnormal arteries and diagnose pulmonary sequestration (PS). Reducing the radiation dose, contrast medium dosage, and injection pressure in CTA, especially in children, has always been an important research topic, but few research is proven by pathology. The current study aimed to evaluate the diagnostic accuracy for children with PS in a quadruple-low CTA (4L-CTA: low tube voltage, radiation, contrast medium, and injection flow rate) using deep learning image reconstruction (DLIR) in comparison with routine protocol CTA with adaptive statistical iterative reconstruction-V (ASIR-V) MATERIALS AND METHODS: 53 patients (1.50±1.36years) suspected with PS were enrolled to undergo chest 4L-CTA using 70kVp tube voltage with radiation dose or 0.90 mGy in volumetric CT dose index (CTDIvol) and contrast medium dose of 0.8 ml/kg injected in 16 s. Images were reconstructed using DLIR. Another 53 patients (1.25±1.02years) with a routine dose protocol was used for comparison, and images were reconstructed with ASIR-V. The contrast-to-noise ratio (CNR) and edge-rise distance (ERD) of the aorta were calculated. The subjective overall image quality and artery visualization were evaluated using a 5-point scale (5, excellent; 3, acceptable). All patients underwent surgery after CT, the sensitivity and specificity for diagnosing PS were calculated. 4L-CTA reduced radiation dose by 51%, contrast dose by 47%, injection flow rate by 44% and injection pressure by 44% compared to the routine CTA (all p<0.05). Both groups had satisfactory subjective image quality and achieved 100% in both sensitivity and specificity for diagnosing PS. 4L-CTA had a reduced CNR (by 27%, p<0.05) but similar ERD, which reflects the image spatial resolution (p>0.05) compared to the routine CTA. 4L-CTA revealed small arteries with a diameter of 0.8 mm. DLIR ensures the realization of 4L-CTA in children with PS for significant radiation and contrast dose reduction, while maintaining image quality, visualization of small arteries, and high diagnostic accuracy.

Denoising of high-resolution 3D UTE-MR angiogram data using lightweight and efficient convolutional neural networks.

Tessema AW, Ambaye DT, Cho H

pubmed logopapersMay 22 2025
High-resolution magnetic resonance angiography (~ 50 μm<sup>3</sup> MRA) data plays a critical role in the accurate diagnosis of various vascular disorders. However, it is very challenging to acquire, and it is susceptible to artifacts and noise which limits its ability to visualize smaller blood vessels and necessitates substantial noise reduction measures. Among many techniques, the BM4D filter is a state-of-the-art denoising technique but comes with high computational cost, particularly for high-resolution 3D MRA data. In this research, five different optimized convolutional neural networks were utilized to denoise contrast-enhanced UTE-MRA data using a supervised learning approach. Since noise-free MRA data is challenging to acquire, the denoised image using BM4D filter was used as ground truth and this research mainly focused on reducing computational cost and inference time for denoising high-resolution UTE-MRA data. All five models were able to generate nearly similar denoised data compared to the ground truth with different computational footprints. Among all, the nested-UNet model generated almost similar images with the ground truth and achieved SSIM, PSNR, and MSE of 0.998, 46.12, and 3.38e-5 with 3× faster inference time than the BM4D filter. In addition, most optimized models like UNet and attention-UNet models generated nearly similar images with nested-UNet but 8.8× and 7.1× faster than the BM4D filter. In conclusion, using highly optimized networks, we have shown the possibility of denoising high-resolution UTE-MRA data with significantly shorter inference time, even with limited datasets from animal models. This can potentially make high-resolution 3D UTE-MRA data to be less computationally burdensome.

Reconsider the Template Mesh in Deep Learning-based Mesh Reconstruction

Fengting Zhang, Boxu Liang, Qinghao Liu, Min Liu, Xiang Chen, Yaonan Wang

arxiv logopreprintMay 21 2025
Mesh reconstruction is a cornerstone process across various applications, including in-silico trials, digital twins, surgical planning, and navigation. Recent advancements in deep learning have notably enhanced mesh reconstruction speeds. Yet, traditional methods predominantly rely on deforming a standardised template mesh for individual subjects, which overlooks the unique anatomical variations between them, and may compromise the fidelity of the reconstructions. In this paper, we propose an adaptive-template-based mesh reconstruction network (ATMRN), which generates adaptive templates from the given images for the subsequent deformation, moving beyond the constraints of a singular, fixed template. Our approach, validated on cortical magnetic resonance (MR) images from the OASIS dataset, sets a new benchmark in voxel-to-cortex mesh reconstruction, achieving an average symmetric surface distance of 0.267mm across four cortical structures. Our proposed method is generic and can be easily transferred to other image modalities and anatomical structures.

Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models

Frederic Wang, Jonathan I. Tamir

arxiv logopreprintMay 21 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.
Page 26 of 31309 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.