Sort by:
Page 25 of 1621612 results

MRI-Based Brain Tumor Detection through an Explainable EfficientNetV2 and MLP-Mixer-Attention Architecture

Mustafa Yurdakul, Şakir Taşdemir

arxiv logopreprintSep 8 2025
Brain tumors are serious health problems that require early diagnosis due to their high mortality rates. Diagnosing tumors by examining Magnetic Resonance Imaging (MRI) images is a process that requires expertise and is prone to error. Therefore, the need for automated diagnosis systems is increasing day by day. In this context, a robust and explainable Deep Learning (DL) model for the classification of brain tumors is proposed. In this study, a publicly available Figshare dataset containing 3,064 T1-weighted contrast-enhanced brain MRI images of three tumor types was used. First, the classification performance of nine well-known CNN architectures was evaluated to determine the most effective backbone. Among these, EfficientNetV2 demonstrated the best performance and was selected as the backbone for further development. Subsequently, an attention-based MLP-Mixer architecture was integrated into EfficientNetV2 to enhance its classification capability. The performance of the final model was comprehensively compared with basic CNNs and the methods in the literature. Additionally, Grad-CAM visualization was used to interpret and validate the decision-making process of the proposed model. The proposed model's performance was evaluated using the five-fold cross-validation method. The proposed model demonstrated superior performance with 99.50% accuracy, 99.47% precision, 99.52% recall and 99.49% F1 score. The results obtained show that the model outperforms the studies in the literature. Moreover, Grad-CAM visualizations demonstrate that the model effectively focuses on relevant regions of MRI images, thus improving interpretability and clinical reliability. A robust deep learning model for clinical decision support systems has been obtained by combining EfficientNetV2 and attention-based MLP-Mixer, providing high accuracy and interpretability in brain tumor classification.

MM-DINOv2: Adapting Foundation Models for Multi-Modal Medical Image Analysis

Daniel Scholz, Ayhan Can Erdur, Viktoria Ehm, Anke Meyer-Baese, Jan C. Peeken, Daniel Rueckert, Benedikt Wiestler

arxiv logopreprintSep 8 2025
Vision foundation models like DINOv2 demonstrate remarkable potential in medical imaging despite their origin in natural image domains. However, their design inherently works best for uni-modal image analysis, limiting their effectiveness for multi-modal imaging tasks that are common in many medical fields, such as neurology and oncology. While supervised models perform well in this setting, they fail to leverage unlabeled datasets and struggle with missing modalities, a frequent challenge in clinical settings. To bridge these gaps, we introduce MM-DINOv2, a novel and efficient framework that adapts the pre-trained vision foundation model DINOv2 for multi-modal medical imaging. Our approach incorporates multi-modal patch embeddings, enabling vision foundation models to effectively process multi-modal imaging data. To address missing modalities, we employ full-modality masking, which encourages the model to learn robust cross-modality relationships. Furthermore, we leverage semi-supervised learning to harness large unlabeled datasets, enhancing both the accuracy and reliability of medical predictions. Applied to glioma subtype classification from multi-sequence brain MRI, our method achieves a Matthews Correlation Coefficient (MCC) of 0.6 on an external test set, surpassing state-of-the-art supervised approaches by +11.1%. Our work establishes a scalable and robust solution for multi-modal medical imaging tasks, leveraging powerful vision foundation models pre-trained on natural images while addressing real-world clinical challenges such as missing data and limited annotations.

Predicting Breath Hold Task Compliance From Head Motion.

Weng TB, Porwal G, Srinivasan D, Inglis B, Rodriguez S, Jacobs DR, Schreiner PJ, Sorond FA, Sidney S, Lewis C, Launer L, Erus G, Nasrallah IM, Bryan RN, Dula AN

pubmed logopapersSep 8 2025
Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment. To develop a non-invasive and data-driven quality filter for breath-hold compliance using only measurements of head motion during imaging. Prospective cohort. Longitudinal data from healthy middle-aged subjects enrolled in the Coronary Artery Risk Development in Young Adults Brain MRI Study, N = 1141, 47.1% female. 3.0 Tesla gradient-echo MRI. Manual labelling of respiratory belt monitored data was used to determine breath hold compliance during MRI scan. A model to estimate the probability of non-compliance with the breath hold task was developed using measures of head motion. The model's ability to identify scans in which the participant was not performing the breath hold were summarized using performance metrics including sensitivity, specificity, recall, and F1 score. The model was applied to additional unmarked data to assess effects on population measures of CVR. Sensitivity analysis revealed exclusion of non-compliant scans using the developed model did not affect median cerebrovascular reactivity (Median [q1, q3] = 1.32 [0.96, 1.71]) compared to using manual review of respiratory belt data (1.33 [1.02, 1.74]) while reducing interquartile range. The final model based on a multi-layer perceptron machine learning classifier estimated non-compliance with an accuracy of 76.9% and an F1 score of 69.5%, indicating a moderate balance between precision and recall for the identification of scans in which the participant was not compliant. The developed model provides the probability of non-compliance with a breath-hold task, which could later be used as a quality filter or included in statistical analyses. TECHNICAL EFFICACY: Stage 3.

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Fang R, Yue M, Wu K, Liu K, Zheng X, Weng S, Chen X, Su Y

pubmed logopapersSep 8 2025
We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer. This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets. Radiomic features were extracted from multiparametric magnetic resonance imaging to generate radiomic scores using a support vector machine algorithm. Three predictive models were constructed: clinical (Model<sup>C</sup>), radiomics-only (Model<sup>R</sup>), and fusion (Model<sup>N</sup>). The models' performances were evaluated by analyzing their receiver operating characteristic curves, and pairwise comparisons of the models' areas under the curves were conducted using DeLong's test and adjusted using the Bonferroni correction. Decision curve analysis with integrated discrimination improvement was used for net benefit comparison. This study enrolled 283 women (training set: n = 198; test set: n = 85). The lymphovascular space invasion groups (substantial and no/focal) had significantly different radiomic scores (P < 0.05). Model<sup>N</sup> achieved an area under the curve of 0.818 (95% confidence interval: 0.757-0.869) and 0.746 (95% confidence interval: 0.640-0.835) for the training and test sets, respectively, demonstrating a good fit according to the Hosmer-Lemeshow test (P > 0.05). The DeLong test with Bonferroni correction indicated that Model<sup>N</sup> demonstrated better diagnostic efficiency than Model<sup>C</sup> in predicting substantial lymphovascular space invasion in the two sets (adjusted P < 0.05). In addition, decision curve analysis demonstrated a higher net benefit for Model<sup>N</sup>, with integrated discrimination improvements of 0.043 and 0.732 (P < 0.01) in the training and test sets, respectively. The multiparametric magnetic resonance imaging-based radiomics machine learning nomogram showed moderate diagnostic performance for substantial lymphovascular space invasion in patients with endometrial cancer.

Optimized reconstruction of undersampled Dixon sequences using new memory-efficient unrolled deep neural networks: HalfVarNet and HalfDIRCN.

Martin S, Trabelsi A, Guye M, Dubois M, Abdeddaim R, Bendahan D, André R

pubmed logopapersSep 8 2025
Fat fraction (FF) quantification in individual muscles using quantitative MRI is of major importance for monitoring disease progression and assessing disease severity in neuromuscular diseases. Undersampling of MRI acquisitions is commonly used to reduce scanning time. The present paper introduces novel unrolled neural networks for the reconstruction of undersampled MRI acquisitions. These networks are designed with the aim of maintaining accurate FF quantification while reducing reconstruction time and memory usage. The proposed approach relies on a combination of a simplified architecture (Half U-Net) with unrolled networks that achieved high performance in the well-known FastMRI challenge (variational network [VarNet] and densely interconnected residual cascading network [DIRCN]). The algorithms were trained and evaluated using 3D MRI Dixon acquisitions of the thigh from controls and patients with neuromuscular diseases. The study was performed by applying a retrospective undersampling with acceleration factors of 4 and 8. Reconstructed images were used to computed FF maps. Results disclose that the novel unrolled neural networks were able to maintain reconstruction, biomarker assessment, and segmentation quality while reducing memory usage by 24% to 16% and reducing reconstruction time from 21% to 17%. Using an acceleration factor of 8, the proposed algorithms, HalfVarNet and HalfDIRCN, achieved structural similarity index (SSIM) scores of 93.76 ± 0.38 and 94.95 ± 0.32, mean squared error (MSE) values of 12.76 ± 1.08 × 10<sup>-2</sup> and 10.25 ± 0.87 × 10<sup>-2</sup>, and a relative FF quadratic error of 0.23 ± 0.02% and 0.17 ± 0.02%, respectively. The proposed method enables time and memory-efficient reconstruction of undersampled 3D MRI data, supporting its potential for clinical application.

Evaluation of Machine Learning Reconstruction Techniques for Accelerated Brain MRI Scans

Jonathan I. Mandel, Shivaprakash Hiremath, Hedyeh Keshtgar, Timothy Scholl, Sadegh Raeisi

arxiv logopreprintSep 8 2025
This retrospective-prospective study evaluated whether a deep learning-based MRI reconstruction algorithm can preserve diagnostic quality in brain MRI scans accelerated up to fourfold, using both public and prospective clinical data. The study included 18 healthy volunteers (scans acquired at 3T, January 2024-March 2025), as well as selected fastMRI public datasets with diverse pathologies. Phase-encoding-undersampled 2D/3D T1, T2, and FLAIR sequences were reconstructed with DeepFoqus-Accelerate and compared with standard-of-care (SOC). Three board-certified neuroradiologists and two MRI technologists independently reviewed 36 paired SOC/AI reconstructions from both datasets using a 5-point Likert scale, while quantitative similarity was assessed for 408 scans and 1224 datasets using Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Haar wavelet-based Perceptual Similarity Index (HaarPSI). No AI-reconstructed scan scored below 3 (minimally acceptable), and 95% scored $\geq 4$. Mean SSIM was 0.95 $\pm$ 0.03 (90% cases >0.90), PSNR >41.0 dB, and HaarPSI >0.94. Inter-rater agreement was slight to moderate. Rare artifacts did not affect diagnostic interpretation. These findings demonstrate that DeepFoqus-Accelerate enables robust fourfold brain MRI acceleration with 75% reduced scan time, while preserving diagnostic image quality and supporting improved workflow efficiency.

AI-based response assessment and prediction in longitudinal imaging for brain metastases treated with stereotactic radiosurgery

Lorenz Achim Kuhn, Daniel Abler, Jonas Richiardi, Andreas F. Hottinger, Luis Schiappacasse, Vincent Dunet, Adrien Depeursinge, Vincent Andrearczyk

arxiv logopreprintSep 8 2025
Brain Metastases (BM) are a large contributor to mortality of patients with cancer. They are treated with Stereotactic Radiosurgery (SRS) and monitored with Magnetic Resonance Imaging (MRI) at regular follow-up intervals according to treatment guidelines. Analyzing and quantifying this longitudinal imaging represents an intractable workload for clinicians. As a result, follow-up images are not annotated and merely assessed by observation. Response to treatment in longitudinal imaging is being studied, to better understand growth trajectories and ultimately predict treatment success or toxicity as early as possible. In this study, we implement an automated pipeline to curate a large longitudinal dataset of SRS treatment data, resulting in a cohort of 896 BMs in 177 patients who were monitored for >360 days at approximately two-month intervals at Lausanne University Hospital (CHUV). We use a data-driven clustering to identify characteristic trajectories. In addition, we predict 12 months lesion-level response using classical as well as graph machine learning Graph Machine Learning (GML). Clustering revealed 5 dominant growth trajectories with distinct final response categories. Response prediction reaches up to 0.90 AUC (CI95%=0.88-0.92) using only pre-treatment and first follow-up MRI with gradient boosting. Similarly, robust predictive performance of up to 0.88 AUC (CI95%=0.86-0.90) was obtained using GML, offering more flexibility with a single model for multiple input time-points configurations. Our results suggest potential automation and increased precision for the comprehensive assessment and prediction of BM response to SRS in longitudinal MRI. The proposed pipeline facilitates scalable data curation for the investigation of BM growth patterns, and lays the foundation for clinical decision support systems aiming at optimizing personalized care.

Predicting Brain Tumor Response to Therapy using a Hybrid Deep Learning and Radiomics Approach

Daniil Tikhonov, Matheus Scatolin, Mohor Banerjee, Qiankun Ji, Ahmed Jaheen, Mostafa Salem, Abdelrahman Elsayed, Hu Wang, Sarim Hashmi, Mohammad Yaqub

arxiv logopreprintSep 8 2025
Accurate evaluation of the response of glioblastoma to therapy is crucial for clinical decision-making and patient management. The Response Assessment in Neuro-Oncology (RANO) criteria provide a standardized framework to assess patients' clinical response, but their application can be complex and subject to observer variability. This paper presents an automated method for classifying the intervention response from longitudinal MRI scans, developed to predict tumor response during therapy as part of the BraTS 2025 challenge. We propose a novel hybrid framework that combines deep learning derived feature extraction and an extensive set of radiomics and clinically chosen features. Our approach utilizes a fine-tuned ResNet-18 model to extract features from 2D regions of interest across four MRI modalities. These deep features are then fused with a rich set of more than 4800 radiomic and clinically driven features, including 3D radiomics of tumor growth and shrinkage masks, volumetric changes relative to the nadir, and tumor centroid shift. Using the fused feature set, a CatBoost classifier achieves a mean ROC AUC of 0.81 and a Macro F1 score of 0.50 in the 4-class response prediction task (Complete Response, Partial Response, Stable Disease, Progressive Disease). Our results highlight that synergizing learned image representations with domain-targeted radiomic features provides a robust and effective solution for automated treatment response assessment in neuro-oncology.

PUUMA (Placental patch and whole-Uterus dual-branch U-Mamba-based Architecture): Functional MRI Prediction of Gestational Age at Birth and Preterm Risk

Diego Fajardo-Rojas, Levente Baljer, Jordina Aviles Verdera, Megan Hall, Daniel Cromb, Mary A. Rutherford, Lisa Story, Emma C. Robinson, Jana Hutter

arxiv logopreprintSep 8 2025
Preterm birth is a major cause of mortality and lifelong morbidity in childhood. Its complex and multifactorial origins limit the effectiveness of current clinical predictors and impede optimal care. In this study, a dual-branch deep learning architecture (PUUMA) was developed to predict gestational age (GA) at birth using T2* fetal MRI data from 295 pregnancies, encompassing a heterogeneous and imbalanced population. The model integrates both global whole-uterus and local placental features. Its performance was benchmarked against linear regression using cervical length measurements obtained by experienced clinicians from anatomical MRI and other Deep Learning architectures. The GA at birth predictions were assessed using mean absolute error. Accuracy, sensitivity, and specificity were used to assess preterm classification. Both the fully automated MRI-based pipeline and the cervical length regression achieved comparable mean absolute errors (3 weeks) and good sensitivity (0.67) for detecting preterm birth, despite pronounced class imbalance in the dataset. These results provide a proof of concept for automated prediction of GA at birth from functional MRI, and underscore the value of whole-uterus functional imaging in identifying at-risk pregnancies. Additionally, we demonstrate that manual, high-definition cervical length measurements derived from MRI, not currently routine in clinical practice, offer valuable predictive information. Future work will focus on expanding the cohort size and incorporating additional organ-specific imaging to improve generalisability and predictive performance.

A Deep Learning-Based Fully Automated Cardiac MRI Segmentation Approach for Tetralogy of Fallot Patients.

Chai WY, Lin G, Wang CJ, Chiang HJ, Ng SH, Kuo YS, Lin YC

pubmed logopapersSep 7 2025
Automated cardiac MR segmentation enables accurate and reproducible ventricular function assessment in Tetralogy of Fallot (ToF), whereas manual segmentation remains time-consuming and variable. To evaluate the deep learning (DL)-based models for automatic left ventricle (LV), right ventricle (RV), and LV myocardium segmentation in ToF, compared with manual reference standard annotations. Retrospective. 427 patients with diverse cardiac conditions (305 non-ToF, 122 ToF), with 395 for training/validation, 32 ToF for internal testing, and 12 external ToF for generalizability assessment. Steady-state free precession cine sequence at 1.5/3 T. U-Net, Deep U-Net, and MultiResUNet were trained under three regimes (non-ToF, ToF-only, mixed), using manual segmentations from one radiologist and one researcher (20 and 10 years of experience, respectively) as reference, with consensus for discrepancies. Performance for LV, RV, and LV myocardium was evaluated using Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and F1-score, alongside regional (basal, middle, apical) and global ventricular function comparisons to manual results. Friedman tests were applied for architecture and regime comparisons, paired Wilcoxon tests for ED-ES differences, and Pearson's r for assessing agreement in global function. MultiResUNet model trained on a mixed dataset (TOF and non-TOF cases) achieved the best segmentation performance, with DSCs of 96.1% for LV and 93.5% for RV. In the internal test set, DSCs for LV, RV, and LV myocardium were 97.3%, 94.7%, and 90.7% at end-diastole, and 93.6%, 92.1%, and 87.8% at end-systole, with ventricular measurement correlations ranging from 0.84 to 0.99. Regional analysis showed LV DSCs of 96.3% (basal), 96.4% (middle), and 94.1% (apical), and RV DSCs of 92.8%, 94.2%, and 89.6%. External validation (n = 12) showed correlations ranging from 0.81 to 0.98. The MultiResUNet model enabled accurate automated cardiac MRI segmentation in ToF with the potential to streamline workflows and improve disease monitoring. 3. Stage 2.
Page 25 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.