Sort by:
Page 25 of 74733 results

ViTaL: A Multimodality Dataset and Benchmark for Multi-pathological Ovarian Tumor Recognition

You Zhou, Lijiang Chen, Guangxia Cui, Wenpei Bai, Yu Guo, Shuchang Lyu, Guangliang Cheng, Qi Zhao

arxiv logopreprintJul 6 2025
Ovarian tumor, as a common gynecological disease, can rapidly deteriorate into serious health crises when undetected early, thus posing significant threats to the health of women. Deep neural networks have the potential to identify ovarian tumors, thereby reducing mortality rates, but limited public datasets hinder its progress. To address this gap, we introduce a vital ovarian tumor pathological recognition dataset called \textbf{ViTaL} that contains \textbf{V}isual, \textbf{T}abular and \textbf{L}inguistic modality data of 496 patients across six pathological categories. The ViTaL dataset comprises three subsets corresponding to different patient data modalities: visual data from 2216 two-dimensional ultrasound images, tabular data from medical examinations of 496 patients, and linguistic data from ultrasound reports of 496 patients. It is insufficient to merely distinguish between benign and malignant ovarian tumors in clinical practice. To enable multi-pathology classification of ovarian tumor, we propose a ViTaL-Net based on the Triplet Hierarchical Offset Attention Mechanism (THOAM) to minimize the loss incurred during feature fusion of multi-modal data. This mechanism could effectively enhance the relevance and complementarity between information from different modalities. ViTaL-Net serves as a benchmark for the task of multi-pathology, multi-modality classification of ovarian tumors. In our comprehensive experiments, the proposed method exhibited satisfactory performance, achieving accuracies exceeding 90\% on the two most common pathological types of ovarian tumor and an overall performance of 85\%. Our dataset and code are available at https://github.com/GGbond-study/vitalnet.

A CT-Based Deep Learning Radiomics Nomogram for Early Recurrence Prediction in Pancreatic Cancer: A Multicenter Study.

Guan X, Liu J, Xu L, Jiang W, Wang C

pubmed logopapersJul 6 2025
Early recurrence (ER) following curative-intent surgery remains a major obstacle to improving long-term outcomes in patients with pancreatic cancer (PC). The accurate preoperative prediction of ER could significantly aid clinical decision-making and guide postoperative management. A retrospective cohort of 493 patients with histologically confirmed PC who underwent resection was analyzed. Contrast-enhanced computed tomography (CT) images were used for tumor segmentation, followed by radiomics and deep learning feature extraction. In total, four distinct feature selection algorithms were employed. Predictive models were constructed using random forest (RF) and support vector machine (SVM) classifiers. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC). A comprehensive nomogram integrating feature scores and clinical factors was developed and validated. Among all of the constructed models, the Inte-SVM demonstrated superior classification performance. The nomogram, incorporating the Inte-feature score, CT-assessed lymph node status, and carbohydrate antigen 19-9 (CA19-9), yielded excellent predictive accuracy in the validation cohort (AUC = 0.920). Calibration curves showed strong agreement between predicted and observed outcomes, and decision curve analysis confirmed the clinical utility of the nomogram. A CT-based deep learning radiomics nomogram enabled the accurate preoperative prediction of early recurrence in patients with pancreatic cancer. This model may serve as a valuable tool to assist clinicians in tailoring postoperative strategies and promoting personalized therapeutic approaches.

Hybrid-View Attention for csPCa Classification in TRUS

Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang

arxiv logopreprintJul 4 2025
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.

Enhancing Prostate Cancer Classification: A Comprehensive Review of Multiparametric MRI and Deep Learning Integration.

Valizadeh G, Morafegh M, Fatemi F, Ghafoori M, Saligheh Rad H

pubmed logopapersJul 4 2025
Multiparametric MRI (mpMRI) has become an essential tool in the detection of prostate cancer (PCa) and can help many men avoid unnecessary biopsies. However, interpreting prostate mpMRI remains subjective, labor-intensive, and more complex compared to traditional transrectal ultrasound. These challenges will likely grow as MRI is increasingly adopted for PCa screening and diagnosis. This development has sparked interest in non-invasive artificial intelligence (AI) support, as larger and better-labeled datasets now enable deep-learning (DL) models to address important tasks in the prostate MRI workflow. Specifically, DL classification networks can be trained to differentiate between benign tissue and PCa, identify non-clinically significant disease versus clinically significant disease, and predict high-grade cancer at both the lesion and patient levels. This review focuses on the integration of DL classification networks with mpMRI for PCa assessment, examining key network architectures and strategies, the impact of different MRI sequence inputs on model performance, and the added value of incorporating domain knowledge and clinical information into MRI-based DL classifiers. It also highlights reported comparisons between DL models and the Prostate Imaging Reporting and Data System (PI-RADS) for PCa diagnosis and the potential of AI-assisted predictions, alongside ongoing efforts to improve model explainability and interpretability to support clinical trust and adoption. It further discusses the potential role of DL-based computer-aided diagnosis systems in improving the prostate MRI reporting workflow while addressing current limitations and future outlooks to facilitate better clinical integration of these systems. Evidence Level: N/A. Technical Efficacy: Stage 2.

Predicting ESWL success for ureteral stones: a radiomics-based machine learning approach.

Yang R, Zhao D, Ye C, Hu M, Qi X, Li Z

pubmed logopapersJul 4 2025
This study aimed to develop and validate a machine learning (ML) model that integrates radiomics and conventional radiological features to predict the success of single-session extracorporeal shock wave lithotripsy (ESWL) for ureteral stones. This retrospective study included 329 patients with ureteral stones who underwent ESWL between October 2022 and June 2024. Patients were randomly divided into a training set (n = 230) and a test set (n = 99) in a 7:3 ratio. Preoperative clinical data and noncontrast CT images were collected, and radiomic features were extracted by outlining the stone's region of interest (ROI). Univariate analysis was used to identify clinical and conventional radiological features related to the success of single-session ESWL. Radiomic features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm to calculate a radiomic score (Rad-score). Five machine learning models (RF, KNN, LR, SVM, AdaBoost) were developed using 10-fold cross-validation. Model performance was assessed using AUC, accuracy, sensitivity, specificity, and F1 score. Calibration and decision curve analyses were used to evaluate model calibration and clinical value. SHAP analysis was conducted to interpret feature importance, and a nomogram was built to improve model interpretability. Ureteral diameter proximal to the stone (UDPS), stone-to-skin distance (SSD), and renal pelvic width (RPW) were identified as significant predictors. Six radiomic features were selected from 1,595 to calculate the Rad-score. The LR model showed the best performance on the test set, with an accuracy of 83.8%, sensitivity of 84.9%, specificity of 82.6%, F1 score of 84.9%, and AUC of 0.888 (95% CI: 0.822-0.949). SHAP analysis indicated that the Rad-score and UDPS were the most influential features. Calibration and decision curve analyses confirmed the model's good calibration and clinical utility. The LR model, integrating radiomics and conventional radiological features, demonstrated strong performance in predicting the success of single-session ESWL for ureteral stones. This approach may assist clinicians in making more accurate treatment decisions. Retrospectively. Not applicable.

Comparison of neural networks for classification of urinary tract dilation from renal ultrasounds: evaluation of agreement with expert categorization.

Chung K, Wu S, Jeanne C, Tsai A

pubmed logopapersJul 4 2025
Urinary tract dilation (UTD) is a frequent problem in infants. Automated and objective classification of UTD from renal ultrasounds would streamline their interpretations. To develop and evaluate the performance of different deep learning models in predicting UTD classifications from renal ultrasound images. We searched our image archive to identify renal ultrasounds performed in infants ≤ 3-months-old for the clinical indications of prenatal UTD and urinary tract infection (9/2023-8/2024). An expert pediatric uroradiologist provided the ground truth UTD labels for representative sagittal sonographic renal images. Three different deep learning models trained with cross-entropy loss were adapted with four-fold cross-validation experiments to determine the overall performance. Our curated database included 492 right and 487 left renal ultrasounds (mean age ± standard deviation = 1.2 ± 0.1 months for both cohorts, with 341 boys/151 girls and 339 boys/148 girls, respectively). The model prediction accuracies for the right and left kidneys were 88.7% (95% confidence interval [CI], [85.8%, 91.5%]) and 80.5% (95% CI, [77.6%, 82.9%]), with weighted kappa scores of 0.90 (95% CI, [0.88, 0.91]) and 0.87 (95% CI, [0.82, 0.92]), respectively. When predictions were binarized into mild (normal/P1) and severe (UTD P2/P3) dilation, accuracies of the right and left kidneys increased to 96.3% (95% CI, [94.9%, 97.8%]) and 91.3% (95% CI, [88.5%, 94.2%]), but agreements decreased to 0.78 (95% CI, [0.73, 0.82]) and 0.75 (95% CI, [0.68, 0.82]), respectively. Deep learning models demonstrated high accuracy and agreement in classifying UTD from infant renal ultrasounds, supporting their potential as decision-support tools in clinical workflows.

Intralesional and perilesional radiomics strategy based on different machine learning for the prediction of international society of urological pathology grade group in prostate cancer.

Li Z, Yang L, Wang X, Xu H, Chen W, Kang S, Huang Y, Shu C, Cui F, Zhang Y

pubmed logopapersJul 4 2025
To develop and evaluate a intralesional and perilesional radiomics strategy based on different machine learning model to differentiate International Society of Urological Pathology (ISUP) grade > 2 group and ISUP ≤ 2 prostate cancers (PCa). 340 case of PCa patients confirmed by radical prostatectomy pathology were obtained from two hospitals. The patients were divided into training, internal validation, and external validation groups. Radiomic features were extracted from T2-weighted imaging, and four distinct radiomic feature models were constructed: intralesional, perilesional, combined tumoral and perilesional, and intralesional and perilesional image fusion. Four machine learning classifiers logistic regression (LR), random forest (RF), extra trees (ET), and multilayer perceptron (MLP) were employed for model training and evaluation to select the optimal model. The performance of each model was assessed by calculating the area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. The AUCs for the RF classifier were higher than that of LR, ET, and MLP, and was selected as the final radiomic model. The nomogram model integrating perilesional, combined intralesional and perilesional, and intralesional and perilesional image fusion had an AUC of 0.929, 0.734, 0.743 for the training, internal, and external validation cohorts, respectively, which was higher than that of the individual intralesional, perilesional, combined intralesional and perilesional, and intralesional and perilesional image fusion models. The proposed nomogram established from perilesional, combined intralesional and perilesional, and intralesional and perilesional image fusion radiomic has the potential to predict the differentiation degree of ISUP PCa patients. Not applicable.

Prior knowledge of anatomical relationships supports automatic delineation of clinical target volume for cervical cancer.

Shi J, Mao X, Yang Y, Lu S, Zhang W, Zhao S, He Z, Yan Z, Liang W

pubmed logopapersJul 4 2025
Deep learning has been used for automatic planning of radiotherapy targets, such as inferring the clinical target volume (CTV) for a given new patient. However, previous deep learning methods mainly focus on predicting CTV from CT images without considering the rich prior knowledge. This limits the usability of such methods and prevents them from being generalized to larger clinical scenarios. We propose an automatic CTV delineation method for cervical cancer based on prior knowledge of anatomical relationships. This prior knowledge involves the anatomical position relationship between Organ-at-risk (OAR) and CTV, and the relationship between CTV and psoas muscle. First, our model proposes a novel feature attention module to integrate the relationship between nearby OARs and CTV to improve segmentation accuracy. Second, we propose a width-driven attention network to incorporate the relative positions of psoas muscle and CTV. The effectiveness of our method is verified by conducting a large number of experiments in private datasets. Compared to the state-of-the-art models, our method has obtained the Dice of 81.33%±6.36% and HD95 of 9.39mm±7.12mm, and ASSD of 2.02mm±0.98mm, which has proved the superiority of our method in cervical cancer CTV delineation. Furthermore, experiments on subgroup analysis and multi-center datasets also verify the generalization of our method. Our study can improve the efficiency of automatic CTV delineation and help the implementation of clinical applications.

AI-enabled obstetric point-of-care ultrasound as an emerging technology in low- and middle-income countries: provider and health system perspectives.

Della Ripa S, Santos N, Walker D

pubmed logopapersJul 4 2025
In many low- and middle-income countries (LMICs), widespread access to obstetric ultrasound is challenged by lack of trained providers, workload, and inadequate resources required for sustainability. Artificial intelligence (AI) is a powerful tool for automating image acquisition and interpretation and may help overcome these barriers. This study explored stakeholders' opinions about how AI-enabled point-of-care ultrasound (POCUS) might change current antenatal care (ANC) services in LMICs and identified key considerations for introduction. We purposely sampled midwives, doctors, researchers, and implementors for this mixed methods study, with a focus on those who live or work in African LMICs. Individuals completed an anonymous web-based survey, then participated in an interview or focus group. Among the 41 participants, we captured demographics, experience with and perceptions of standard POCUS, and reactions to an AI-enabled POCUS prototype description. Qualitative data were analyzed by thematic content analysis and quantitative Likert and rank-order data were aggregated as frequencies; the latter was presented alongside illustrative quotes to highlight overall versus nuanced perceptions. The following themes emerged: (1) priority AI capabilities; (2) potential impact on ANC quality, services and clinical outcomes; (3) health system integration considerations; and (4) research priorities. First, AI-enabled POCUS elicited concerns around algorithmic accuracy and compromised clinical acumen due to over-reliance on AI, but an interest in gestational age automation. Second, there was overall agreement that both standard and AI-enabled POCUS could improve ANC attendance (75%, 65%, respectively), provider-client trust (82%, 60%), and providers' confidence in clinical decision-making (85%, 70%). AI consistently elicited more uncertainty among respondents. Third, health system considerations emerged including task sharing with midwives, ultrasound training delivery and curricular content, and policy-related issues such as data security and liability risks. For both standard and AI-enabled POCUS, clinical decision support and referral strengthening were deemed necessary to improve outcomes. Lastly, ranked priority research areas included algorithm accuracy across diverse populations and impact on ANC performance indicators; mortality indicators were less prioritized. Optimism that AI-enabled POCUS can increase access in settings with limited personnel and resources is coupled with expressions of caution and potential risks that warrant careful consideration and exploration.

Multi-modal convolutional neural network-based thyroid cytology classification and diagnosis.

Yang D, Li T, Li L, Chen S, Li X

pubmed logopapersJul 4 2025
The cytologic diagnosis of thyroid nodules' benign and malignant nature based on cytological smears obtained through ultrasound-guided fine-needle aspiration is crucial for determining subsequent treatment plans. The development of artificial intelligence (AI) can assist pathologists in improving the efficiency and accuracy of cytological diagnoses. We propose a novel diagnostic model based on a network architecture that integrates cytologic images and digital ultrasound image features (CI-DUF) to solve the multi-class classification task of thyroid fine-needle aspiration cytology. We compare this model with a model relying solely on cytologic images (CI) and evaluate its performance and clinical application potential in thyroid cytology diagnosis. A retrospective analysis was conducted on 384 patients with 825 thyroid cytologic images. These images were used as a dataset for training the models, which were divided into training and testing sets in an 8:2 ratio to assess the performance of both the CI and CI-DUF diagnostic models. The AUROC of the CI model for thyroid cytology diagnosis was 0.9119, while the AUROC of the CI-DUF diagnostic model was 0.9326. Compared with the CI model, the CI-DUF model showed significantly increased accuracy, sensitivity, and specificity in the cytologic classification of papillary carcinoma, follicular neoplasm, medullary carcinoma, and benign lesions. The proposed CI-DUF diagnostic model, which intergrates multi-modal information, shows better diagnostic performance than the CI model that relies only on cytologic images, particularly excelling in thyroid cytology classification.
Page 25 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.