Sort by:
Page 249 of 3623619 results

Developing ultrasound-based machine learning models for accurate differentiation between sclerosing adenosis and invasive ductal carcinoma.

Liu G, Yang N, Qu Y, Chen G, Wen G, Li G, Deng L, Mai Y

pubmed logopapersJun 28 2025
This study aimed to develop a machine learning model using breast ultrasound images to improve the non-invasive differential diagnosis between Sclerosing Adenosis (SA) and Invasive Ductal Carcinoma (IDC). 2046 ultrasound images from 772 SA and IDC patients were collected, Regions of Interest (ROI) were delineated, and features were extracted. The dataset was split into training and test cohorts, and feature selection was performed by correlation coefficients and Recursive Feature Elimination. 10 classifiers with Grid Search and 5-fold cross-validation were applied during model training. Receiver Operating Characteristic (ROC) curve and Youden index were used to model evaluation. SHapley Additive exPlanations (SHAP) was employed for model interpretation. Another 224 ROIs of 84 patients from other hospitals were used for external validation. For the ROI-level model, XGBoost with 18 features achieved an area under the curve (AUC) of 0.9758 (0.9654-0.9847) in the test cohort and 0.9906 (0.9805-0.9973) in the validation cohort. For the patient-level model, logistic regression with 9 features achieved an AUC of 0.9653 (0.9402-0.9859) in the test cohort and 0.9846 (0.9615-0.9978) in the validation cohort. The feature "Original shape Major Axis Length" was identified as the most important, with its value positively correlated with a higher likelihood of the sample being IDC. Feature contributions for specific ROIs were visualized as well. We developed explainable, ultrasound-based machine learning models with high performance for differentiating SA and IDC, offering a potential non-invasive tool for improved differential diagnosis. Question Accurately distinguishing between sclerosing adenosis (SA) and invasive ductal carcinoma (IDC) in a non-invasive manner has been a diagnostic challenge. Findings Explainable, ultrasound-based machine learning models with high performance were developed for differentiating SA and IDC, and validated well in external validation cohort. Critical relevance These models provide non-invasive tools to reduce misdiagnoses of SA and improve early detection for IDC.

Revealing the Infiltration: Prognostic Value of Automated Segmentation of Non-Contrast-Enhancing Tumor in Glioblastoma

Gomez-Mahiques, M., Lopez-Mateu, C., Gil-Terron, F. J., Montosa-i-Mico, V., Svensson, S. F., Mendoza Mireles, E. E., Vik-Mo, E. O., Emblem, K., Balana, C., Puig, J., Garcia-Gomez, J. M., Fuster-Garcia, E.

medrxiv logopreprintJun 28 2025
BackgroundPrecise delineation of non-contrast-enhancing tumor (nCET) in glioblastoma (GB) is critical for maximal safe resection, yet routine imaging cannot reliably separate infiltrative tumor from vasogenic edema. The aim of this study was to develop and validate an automated method to identify nCET and assess its prognostic value. MethodsPre-operative T2-weighted and FLAIR MRI from 940 patients with newly diagnosed GB in four multicenter cohorts were analyzed. A deep-learning model segmented enhancing tumor, edema and necrosis; a non-local spatially varying finite mixture model then isolated edema subregions containing nCET. The ratio of nCET to total edema volume--the Diffuse Infiltration Index (DII)--was calculated. Associations between DII and overall survival (OS) were examined with Kaplan-Meier curves and multivariable Cox regression. ResultsThe algorithm distinguished nCET from vasogenic edema in 97.5 % of patients, showing a mean signal-intensity gap > 5 %. Higher DII is able to stratify patients with shorter OS. In the NCT03439332 cohort, DII above the optimal threshold doubled the hazard of death (hazard ratio 2.09, 95 % confidence interval 1.34-3.25; p = 0.0012) and reduced median survival by 122 days. Significant, though smaller, effects were confirmed in GLIOCAT & BraTS (hazard ratio 1.31; p = 0.022), OUS (hazard ratio 1.28; p = 0.007) and in pooled analysis (hazard ratio 1.28; p = 0.0003). DII remained an independent predictor after adjustment for age, extent of resection and MGMT methylation. ConclusionsWe present a reproducible, server-hosted tool for automated nCET delineation and DII biomarker extraction that enables robust, independent prognostic stratification. It promises to guide supramaximal surgical planning and personalized neuro-oncology research and care. Key Points- KP1: Robust automated MRI tool segments non-contrast-enhancing (nCET) glioblastoma. - KP2: Introduced and validated the Diffuse Infiltration Index with prognostic value. - KP3: nCET mapping enables RANO supramaximal resection for personalized surgery. Importance of the StudyThis study underscores the clinical importance of accurately delineating non-contrast-enhancing tumor (nCET) regions in glioblastoma (GB) using standard MRI. Despite their lack of contrast enhancement, nCET areas often harbor infiltrative tumor cells critical for disease progression and recurrence. By integrating deep learning segmentation with a non-local finite mixture model, we developed a reproducible, automated methodology for nCET delineation and introduced the Diffuse Infiltration Index (DII), a novel imaging biomarker. Higher DII values were independently associated with reduced overall survival across large, heterogeneous cohorts. These findings highlight the prognostic relevance of imaging-defined infiltration patterns and support the use of nCET segmentation in clinical decision-making. Importantly, this methodology aligns with and operationalizes recent RANO criteria on supramaximal resection, offering a practical, image-based tool to improve surgical planning. In doing so, our work advances efforts toward more personalized neuro-oncological care, potentially improving outcomes while minimizing functional compromise.

Identifying visible tissue in intraoperative ultrasound: a method and application.

Weld A, Dixon L, Dyck M, Anichini G, Ranne A, Camp S, Giannarou S

pubmed logopapersJun 28 2025
Intraoperative ultrasound scanning is a demanding visuotactile task. It requires operators to simultaneously localise the ultrasound perspective and manually perform slight adjustments to the pose of the probe, making sure not to apply excessive force or breaking contact with the tissue, while also characterising the visible tissue. To analyse the probe-tissue contact, an iterative filtering and topological method is proposed to identify the underlying visible tissue, which can be used to detect acoustic shadow and construct confidence maps of perceptual salience. For evaluation, datasets containing both in vivo and medical phantom data are created. A suite of evaluations is performed, including an evaluation of acoustic shadow classification. Compared to an ablation, deep learning, and statistical method, the proposed approach achieves superior classification on in vivo data, achieving an <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>F</mi> <mi>β</mi></msub> </math> score of 0.864, in comparison with 0.838, 0.808, and 0.808. A novel framework for evaluating the confidence estimation of probe-tissue contact is created. The phantom data are captured specifically for this, and comparison is made against two established methods. The proposed method produced the superior response, achieving an average normalised root-mean-square error of 0.168, in comparison with 1.836 and 4.542. Evaluation is also extended to determine the algorithm's robustness to parameter perturbation, speckle noise, data distribution shift, and capability for guiding a robotic scan. The results of this comprehensive set of experiments justify the potential clinical value of the proposed algorithm, which can be used to support clinical training and robotic ultrasound automation.

Radio DINO: A foundation model for advanced radiomics and AI-driven medical imaging analysis.

Zedda L, Loddo A, Di Ruberto C

pubmed logopapersJun 28 2025
Radiomics is transforming medical imaging by extracting complex features that enhance disease diagnosis, prognosis, and treatment evaluation. However, traditional approaches face significant challenges, such as the need for manual feature engineering, high dimensionality, and limited sample sizes. This paper presents Radio DINO, a novel family of deep learning foundation models that leverage self-supervised learning (SSL) techniques from DINO and DINOV2, pretrained on the RadImageNet dataset. The novelty of our approach lies in (1) developing Radio DINO to capture rich semantic embeddings, enabling robust feature extraction without manual intervention, (2) demonstrating superior performance across various clinical tasks on the MedMNISTv2 dataset, surpassing existing models, and (3) enhancing the interpretability of the model by providing visualizations that highlight its focus on clinically relevant image regions. Our results show that Radio DINO has the potential to democratize advanced radiomics tools, making them accessible to healthcare institutions with limited resources and ultimately improving diagnostic and prognostic outcomes in radiology.

Prognostic value of body composition out of PSMA-PET/CT in prostate cancer patients undergoing PSMA-therapy.

Roll W, Plagwitz L, Ventura D, Masthoff M, Backhaus C, Varghese J, Rahbar K, Schindler P

pubmed logopapersJun 28 2025
This retrospective study aims to develop a deep learning-based approach to whole-body CT segmentation out of standard PSMA-PET-CT to assess body composition in metastatic castration resistant prostate cancer (mCRPC) patients prior to [<sup>177</sup>Lu]Lu-PSMA radioligand therapy (RLT). Our goal is to go beyond standard PSMA-PET-based pretherapeutic assessment and identify additional body composition metrics out of the CT-component, with potential prognostic value. We used a deep learning segmentation model to perform fully automated segmentation of different tissue compartments, including visceral- (VAT), subcutaneous- (SAT), intra/intermuscular- adipose tissue (IMAT) from [<sup>68</sup> Ga]Ga-PSMA-PET-CT scans of n = 86 prostate cancer patients before RLT. The proportions of different adipose tissue compartments to total adipose tissue (TAT) assessed on a 3D CT-volume of the abdomen or on a 2D single slice basis (centered at third lumbal vertebra (L3)) were compared for their prognostic value. First, univariate and multivariate Cox proportional hazards regression analyses were performed. Subsequently, the subjects were dichotomized at the median tissue composition, and these subgroups were evaluated by Kaplan-Meier analysis with the log-rank test. The automated segmentation model was useful for delineating different adipose tissue compartments and skeletal muscle across different patient anatomies. Analyses revealed significant correlations between lower SAT and higher IMAT ratios and poorer therapeutic outcomes in Cox regression analysis (SAT/TAT: p = 0.038; IMAT/TAT: p < 0.001) in the 3D model. In the single slice approach only IMAT/SAT was significantly associated with survival in Cox regression analysis (p < 0.001; SAT/TAT: p > 0.05). IMAT ratio remained an independent predictor of survival in multivariate analysis when including PSMA-PET and blood-based prognostic factors. In this proof-of-principle study the implementation of a deep learning-based whole-body analysis provides a robust and detailed CT-based assessment of body composition in mCRPC patients undergoing RLT. Potential prognostic parameters have to be corroborated in larger prospective datasets.

Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.

Sial HA, Carandell F, Ajanovic S, Jiménez J, Quesada R, Santos F, Buck WC, Sidat M, Bassat Q, Jobst B, Petrone P

pubmed logopapersJun 28 2025
Infant meningitis can be a life-threatening disease and requires prompt and accurate diagnosis to prevent severe outcomes or death. Gold-standard diagnosis requires lumbar puncture (LP) to obtain and analyze cerebrospinal fluid (CSF). Despite being standard practice, LPs are invasive, pose risks for the patient and often yield negative results, either due to contamination with red blood cells from the puncture itself or because LPs are routinely performed to rule out a life-threatening infection, despite the disease's relatively low incidence. Furthermore, in low-income settings where incidence is the highest, LPs and CSF exams are rarely feasible, and suspected meningitis cases are generally treated empirically. There is a growing need for non-invasive, accurate diagnostic methods. We developed a three-stage deep learning framework using Neosonics ultrasound technology for 30 infants with suspected meningitis and a permeable fontanelle at three Spanish University Hospitals (from 2021 to 2023). In stage 1, 2194 images were processed for quality control using a vessel/non-vessel model, with a focus on vessel identification and manual removal of images exhibiting artifacts such as poor coupling and clutter. This refinement process resulted in a final cohort comprising 16 patients-6 cases (336 images) and 10 controls (445 images), yielding 781 images for the second stage. The second stage involved the use of a deep learning model to classify images based on a white blood cell count threshold (set at 30 cells/mm<sup>3</sup>) into control or meningitis categories. The third stage integrated explainable artificial intelligence (XAI) methods, such as Grad-CAM visualizations, alongside image statistical analysis, to provide transparency and interpretability of the model's decision-making process in our artificial intelligence-driven screening tool. Our approach achieved 96% accuracy in quality control and 93% precision and 92% accuracy in image-level meningitis detection, with an overall patient-level accuracy of 94%. It identified 6 meningitis cases and 10 controls with 100% sensitivity and 90% specificity, demonstrating only a single misclassification. The use of gradient-weighted class activation mapping-based XAI significantly enhanced diagnostic interpretability, and to further refine our insights we incorporated a statistics-based XAI approach. By analyzing image metrics such as entropy and standard deviation, we identified texture variations in the images attributable to the presence of cells, which improved the interpretability of our diagnostic tool. This study supports the efficacy of a multi-stage deep learning model for non-invasive screening of infant meningitis and its potential to guide the need for LPs. It also highlights the transformative potential of artificial intelligence in medical diagnostic screening for neonatal health care, paving the way for future research and innovations.

Deep Learning-Based Automated Detection of the Middle Cerebral Artery in Transcranial Doppler Ultrasound Examinations.

Lee H, Shi W, Mukaddim RA, Brunelle E, Palisetti A, Imaduddin SM, Rajendram P, Incontri D, Lioutas VA, Heldt T, Raju BI

pubmed logopapersJun 28 2025
Transcranial Doppler (TCD) ultrasound has significant clinical value for assessing cerebral hemodynamics, but its reliance on operator expertise limits broader clinical adoption. In this work, we present a lightweight real-time deep learning-based approach capable of automatically identifying the middle cerebral artery (MCA) in TCD Color Doppler images. Two state-of-the-art object detection models, YOLOv10 and Real-Time Detection Transformers (RT-DETR), were investigated for automated MCA detection in real-time. TCD Color Doppler data (41 subjects; 365 videos; 61,611 frames) were collected from neurologically healthy individuals (n = 31) and stroke patients (n = 10). MCA bounding box annotations were performed by clinical experts on all frames. Model training consisted of pretraining utilizing a large abdominal ultrasound dataset followed by subsequent fine-tuning on acquired TCD data. Detection performance at the instance and frame levels, and inference speed were assessed through four-fold cross-validation. Inter-rater agreement between model and two human expert readers was assessed using distance between bounding boxes and inter-rater variability was quantified using the individual equivalence coefficient (IEC) metric. Both YOLOv10 and RT-DETR models showed comparable frame level accuracy for MCA presence, with F1 scores of 0.884 ± 0.023 and 0.884 ± 0.019 respectively. YOLOv10 outperformed RT-DETR for instance-level localization accuracy (AP: 0.817 vs. 0.780) and had considerably faster inference speed on a desktop CPU (11.6 ms vs. 91.14 ms). Furthermore, YOLOv10 showed an average inference time of 36 ms per frame on a tablet device. The IEC was -1.08 with 95 % confidence interval: [-1.45, -0.19], showing that the AI predictions deviated less from each reader than the readers' annotations deviated from each other. Real-time automated detection of the MCA is feasible and can be implemented on mobile platforms, potentially enabling wider clinical adoption by less-trained operators in point-of-care settings.

Comparative analysis of iterative vs AI-based reconstruction algorithms in CT imaging for total body assessment: Objective and subjective clinical analysis.

Tucciariello RM, Botte M, Calice G, Cammarota A, Cammarota F, Capasso M, Nardo GD, Lancellotti MI, Palmese VP, Sarno A, Villonio A, Bianculli A

pubmed logopapersJun 28 2025
This study evaluates the performance of Iterative and AI-based Reconstruction algorithms in CT imaging for brain, chest, and upper abdomen assessments. Using a 320-slice CT scanner, phantom images were analysed through quantitative metrics such as Noise, Contrast-to-Noise-Ratio and Target Transfer Function. Additionally, five radiologists performed subjective evaluations on real patient images by scoring clinical parameters related to anatomical structures across the three body sites. The study aimed to relate results obtained with the typical approach related to parameters involved in medical physics using a Catphan physical phantom, with the evaluations assigned by the radiologists to the clinical parameters chosen in this study, and to determine whether the physical approach alone can ensure the implementation of new procedures and the optimization in clinical practice. AI-based algorithms demonstrated superior performance in chest and abdominal imaging, enhancing parenchymal and vascular detail with notable reductions in noise. However, their performance in brain imaging was less effective, as the aggressive noise reduction led to excessive smoothing, which affected diagnostic interpretability. Iterative reconstruction methods provided balanced results for brain imaging, preserving structural details and maintaining diagnostic clarity. The findings emphasize the need for region-specific optimization of reconstruction protocols. While AI-based methods can complement traditional IR techniques, they should not be assumed to inherently improve outcomes. A critical and cautious introduction of AI-based techniques is essential, ensuring radiologists adapt effectively without compromising diagnostic accuracy.

Cardiac Measurement Calculation on Point-of-Care Ultrasonography with Artificial Intelligence

Mercaldo, S. F., Bizzo, B. C., Sadore, T., Halle, M. A., MacDonald, A. L., Newbury-Chaet, I., L'Italien, E., Schultz, A. S., Tam, V., Hegde, S. M., Mangion, J. R., Mehrotra, P., Zhao, Q., Wu, J., Hillis, J.

medrxiv logopreprintJun 28 2025
IntroductionPoint-of-care ultrasonography (POCUS) enables clinicians to obtain critical diagnostic information at the bedside especially in resource limited settings. This information may include 2D cardiac quantitative data, although measuring the data manually can be time-consuming and subject to user experience. Artificial intelligence (AI) can potentially automate this quantification. This study assessed the interpretation of key cardiac measurements on POCUS images by an AI-enabled device (AISAP Cardio V1.0). MethodsThis retrospective diagnostic accuracy study included 200 POCUS cases from four hospitals (two in Israel and two in the United States). Each case was independently interpreted by three cardiologists and the device for seven measurements (left ventricular (LV) ejection fraction, inferior vena cava (IVC) maximal diameter, left atrial (LA) area, right atrial (RA) area, LV end diastolic diameter, right ventricular (RV) fractional area change and aortic root diameter). The endpoints were the root mean square error (RMSE) of the device compared to the average cardiologist measurement (LV ejection fraction and IVC maximal diameter were primary endpoints; the other measurements were secondary endpoints). Predefined passing criteria were based on the upper bounds of the RMSE 95% confidence intervals (CIs). The inter-cardiologist RMSE was also calculated for reference. ResultsThe device achieved the passing criteria for six of the seven measurements. While not achieving the passing criterion for RV fractional area change, it still achieved a better RMSE than the inter-cardiologist RMSE. The RMSE was 6.20% (95% CI: 5.57 to 6.83; inter-cardiologist RMSE of 8.23%) for LV ejection fraction, 0.25cm (95% CI: 0.20 to 0.29; 0.36cm) for IVC maximal diameter, 2.39cm2 (95% CI: 1.96 to 2.82; 4.39cm2) for LA area, 2.11cm2 (95% CI: 1.75 to 2.47; 3.49cm2) for RA area, 5.06mm (95% CI: 4.58 to 5.55; 4.67mm) for LV end diastolic diameter, 10.17% (95% CI: 9.01 to 11.33; 14.12%) for RV fractional area change and 0.19cm (95% CI: 0.16 to 0.21; 0.24cm) for aortic root diameter. DiscussionThe device accurately calculated these cardiac measurements especially when benchmarked against inter-cardiologist variability. Its use could assist clinicians who utilize POCUS and better enable their clinical decision-making.

AI-Derived Splenic Response in Cardiac PET Predicts Mortality: A Multi-Site Study

Dharmavaram, N., Ramirez, G., Shanbhag, A., Miller, R. J. H., Kavanagh, P., Yi, J., Lemley, M., Builoff, V., Marcinkiewicz, A. M., Dey, D., Hainer, J., Wopperer, S., Knight, S., Le, V. T., Mason, S., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R. S., Rosamond, T. L., Al-Mallah, M. H., Slipczuk, L., Travin, M., Acampa, W., Einstein, A., Chareonthaitawee, P., Berman, D., Di Carli, M., Slomka, P.

medrxiv logopreprintJun 28 2025
BackgroundInadequate pharmacologic stress may limit the diagnostic and prognostic accuracy of myocardial perfusion imaging (MPI). The splenic ratio (SR), a measure of stress adequacy, has emerged as a potential imaging biomarker. ObjectivesTo evaluate the prognostic value of artificial intelligence (AI)-derived SR in a large multicenter 82Rb-PET cohort undergoing regadenoson stress testing. MethodsWe retrospectively analyzed 10,913 patients from three sites in the REFINE PET registry with clinically indicated MPI and linked clinical outcomes. SR was calculated using fully automated algorithms as the ratio of splenic uptake at stress versus rest. Patients were stratified by SR into high ([&ge;]90th percentile) and low (<90th percentile) groups. The primary outcome was major adverse cardiovascular events (MACE). Survival analysis was conducted using Kaplan-Meier and Cox proportional hazards models adjusted for clinical and imaging covariates, including myocardial flow reserve (MFR [&ge;]2 vs. <2). ResultsThe cohort had a median age of 68 years, with 57% male patients. Common risk factors included hypertension (84%), dyslipidemia (76%), diabetes (33%), and prior coronary artery disease (31%). Median follow-up was 4.6 years. Patients with high SR (n=1,091) had an increased risk of MACE (HR 1.18, 95% CI 1.06-1.31, p=0.002). Among patients with preserved MFR ([&ge;]2; n=7,310), high SR remained independently associated with MACE (HR 1.44, 95% CI 1.24-1.67, p<0.0001). ConclusionsElevated AI-derived SR was independently associated with adverse cardiovascular outcomes, including among patients with preserved MFR. These findings support SR as a novel, automated imaging biomarker for risk stratification in 82Rb PET MPI. Condensed AbstractAI-derived splenic ratio (SR), a marker of pharmacologic stress adequacy, was independently associated with increased cardiovascular risk in a large 82Rb PET cohort, even among patients with preserved myocardial flow reserve (MFR). High SR identified individuals with elevated MACE risk despite normal perfusion and flow findings, suggesting unrecognized physiologic vulnerability. Incorporating automated SR into PET MPI interpretation may enhance risk stratification and identify patients who could benefit from intensified preventive care, particularly when traditional imaging markers appear reassuring. These findings support SR as a clinically meaningful, easily integrated biomarker in stress PET imaging.
Page 249 of 3623619 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.