Sort by:
Page 231 of 2332330 results

Application research of artificial intelligence software in the analysis of thyroid nodule ultrasound image characteristics.

Xu C, Wang Z, Zhou J, Hu F, Wang Y, Xu Z, Cai Y

pubmed logopapersJan 1 2025
Thyroid nodule, as a common clinical endocrine disease, has become increasingly prevalent worldwide. Ultrasound, as the premier method of thyroid imaging, plays an important role in accurately diagnosing and managing thyroid nodules. However, there is a high degree of inter- and intra-observer variability in image interpretation due to the different knowledge and experience of sonographers who have huge ultrasound examination tasks everyday. Artificial intelligence based on computer-aided diagnosis technology maybe improve the accuracy and time efficiency of thyroid nodules diagnosis. This study introduced an artificial intelligence software called SW-TH01/II to evaluate ultrasound image characteristics of thyroid nodules including echogenicity, shape, border, margin, and calcification. We included 225 ultrasound images from two hospitals in Shanghai, respectively. The sonographers and software performed characteristics analysis on the same group of images. We analyzed the consistency of the two results and used the sonographers' results as the gold standard to evaluate the accuracy of SW-TH01/II. A total of 449 images were included in the statistical analysis. For the seven indicators, the proportions of agreement between SW-TH01/II and sonographers' analysis results were all greater than 0.8. For the echogenicity (with very hypoechoic), aspect ratio and margin, the kappa coefficient between the two methods were above 0.75 (P < 0.001). The kappa coefficients of echogenicity (echotexture and echogenicity level), border and calcification between the two methods were above 0.6 (P < 0.001). The median time it takes for software and sonographers to interpret an image were 3 (2, 3) seconds and 26.5 (21.17, 34.33) seconds, respectively, and the difference were statistically significant (z = -18.36, P < 0.001). SW-TH01/II has a high degree of accuracy and great time efficiency benefits in judging the characteristics of thyroid nodule. It can provide more objective results and improve the efficiency of ultrasound examination. SW-TH01/II can be used to assist the sonographers in characterizing the thyroid nodule ultrasound images.

Enhancing Attention Network Spatiotemporal Dynamics for Motor Rehabilitation in Parkinson's Disease.

Pei G, Hu M, Ouyang J, Jin Z, Wang K, Meng D, Wang Y, Chen K, Wang L, Cao LZ, Funahashi S, Yan T, Fang B

pubmed logopapersJan 1 2025
Optimizing resource allocation for Parkinson's disease (PD) motor rehabilitation necessitates identifying biomarkers of responsiveness and dynamic neuroplasticity signatures underlying efficacy. A cohort study of 52 early-stage PD patients undergoing 2-week multidisciplinary intensive rehabilitation therapy (MIRT) was conducted, which stratified participants into responders and nonresponders. A multimodal analysis of resting-state electroencephalography (EEG) microstates and functional magnetic resonance imaging (fMRI) coactivation patterns was performed to characterize MIRT-induced spatiotemporal network reorganization. Responders demonstrated clinically meaningful improvement in motor symptoms, exceeding the minimal clinically important difference threshold of 3.25 on the Unified PD Rating Scale part III, alongside significant reductions in bradykinesia and a significant enhancement in quality-of-life scores at the 3-month follow-up. Resting-state EEG in responders showed a significant attenuation in microstate C and a significant enhancement in microstate D occurrences, along with significantly increased transitions from microstate A/B to D, which significantly correlated with motor function, especially in bradykinesia gains. Concurrently, fMRI analyses identified a prolonged dwell time of the dorsal attention network coactivation/ventral attention network deactivation pattern, which was significantly inversely associated with microstate C occurrence and significantly linked to motor improvement. The identified brain spatiotemporal neural markers were validated using machine learning models to assess the efficacy of MIRT in motor rehabilitation for PD patients, achieving an average accuracy rate of 86%. These findings suggest that MIRT may facilitate a shift in neural networks from sensory processing to higher-order cognitive control, with the dynamic reallocation of attentional resources. This preliminary study validates the necessity of integrating cognitive-motor strategies for the motor rehabilitation of PD and identifies novel neural markers for assessing treatment efficacy.

Intelligent and precise auxiliary diagnosis of breast tumors using deep learning and radiomics.

Wang T, Zang B, Kong C, Li Y, Yang X, Yu Y

pubmed logopapersJan 1 2025
Breast cancer is the most common malignant tumor among women worldwide, and early diagnosis is crucial for reducing mortality rates. Traditional diagnostic methods have significant limitations in terms of accuracy and consistency. Imaging is a common technique for diagnosing and predicting breast cancer, but human error remains a concern. Increasingly, artificial intelligence (AI) is being employed to assist physicians in reducing diagnostic errors. We developed an intelligent diagnostic model combining deep learning and radiomics to enhance breast tumor diagnosis. The model integrates MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, improving feature processing and efficiency while reducing parameters. Using AI-Dhabyani and TCIA breast ultrasound datasets, we validated the model internally and externally, comparing it to VGG16, ResNet, AlexNet, and MobileNet. Results: The internal validation set achieved an accuracy of 83.84% with an AUC of 0.92, outperforming other models. The external validation set showed an accuracy of 69.44% with an AUC of 0.75, demonstrating high robustness and generalizability. Conclusions: We developed an intelligent diagnostic model using deep learning and radiomics to improve breast tumor diagnosis. The model combines MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, enhancing feature processing and efficiency while reducing parameters. It was validated internally and externally using the AI-Dhabyani and TCIA breast ultrasound datasets and compared with VGG16, ResNet, AlexNet, and MobileNet.

Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging.

Wang X, Sharpnack J, Lee TCM

pubmed logopapersJan 1 2025
Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients' survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs' morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer.

Radiomics and Deep Learning as Important Techniques of Artificial Intelligence - Diagnosing Perspectives in Cytokeratin 19 Positive Hepatocellular Carcinoma.

Wang F, Yan C, Huang X, He J, Yang M, Xian D

pubmed logopapersJan 1 2025
Currently, there are inconsistencies among different studies on preoperative prediction of Cytokeratin 19 (CK19) expression in HCC using traditional imaging, radiomics, and deep learning. We aimed to systematically analyze and compare the performance of non-invasive methods for predicting CK19-positive HCC, thereby providing insights for the stratified management of HCC patients. A comprehensive literature search was conducted in PubMed, EMBASE, Web of Science, and the Cochrane Library from inception to February 2025. Two investigators independently screened and extracted data based on inclusion and exclusion criteria. Eligible studies were included, and key findings were summarized in tables to provide a clear overview. Ultimately, 22 studies involving 3395 HCC patients were included. 72.7% (16/22) focused on traditional imaging, 36.4% (8/22) on radiomics, 9.1% (2/22) on deep learning, and 54.5% (12/22) on combined models. The magnetic resonance imaging was the most commonly used imaging modality (19/22), and over half of the studies (12/22) were published between 2022 and 2025. Moreover, 27.3% (6/22) were multicenter studies, 36.4% (8/22) included a validation set, and only 13.6% (3/22) were prospective. The area under the curve (AUC) range of using clinical and traditional imaging was 0.560 to 0.917. The AUC ranges of radiomics were 0.648 to 0.951, and the AUC ranges of deep learning were 0.718 to 0.820. Notably, the AUC ranges of combined models of clinical, imaging, radiomics and deep learning were 0.614 to 0.995. Nevertheless, the multicenter external data were limited, with only 13.6% (3/22) incorporating validation. The combined model integrating traditional imaging, radiomics and deep learning achieves excellent potential and performance for predicting CK19 in HCC. Based on current limitations, future research should focus on building an easy-to-use dynamic online tool, combining multicenter-multimodal imaging and advanced deep learning approaches to enhance the accuracy and robustness of model predictions.

MRISeqClassifier: A Deep Learning Toolkit for Precise MRI Sequence Classification.

Pan J, Chen Q, Sun C, Liang R, Bian J, Xu J

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool in medicine, widely used to detect and assess various health conditions. Different MRI sequences, such as T1-weighted, T2-weighted, and FLAIR, serve distinct roles by highlighting different tissue characteristics and contrasts. However, distinguishing them based solely on the description file is currently impossible due to confusing or incorrect annotations. Additionally, there is a notable lack of effective tools to differentiate these sequences. In response, we developed a deep learning-based toolkit tailored for small, unrefined MRI datasets. This toolkit enables precise sequence classification and delivers performance comparable to systems trained on large, meticulously curated datasets. Utilizing lightweight model architectures and incorporating a voting ensemble method, the toolkit enhances accuracy and stability. It achieves a 99% accuracy rate using only 10% of the data typically required in other research. The code is available at https://github.com/JinqianPan/MRISeqClassifier.

Radiomics machine learning based on asymmetrically prominent cortical and deep medullary veins combined with clinical features to predict prognosis in acute ischemic stroke: a retrospective study.

Li H, Chang C, Zhou B, Lan Y, Zang P, Chen S, Qi S, Ju R, Duan Y

pubmed logopapersJan 1 2025
Acute ischemic stroke (AIS) has a poor prognosis and a high recurrence rate. Predicting the outcomes of AIS patients in the early stages of the disease is therefore important. The establishment of intracerebral collateral circulation significantly improves the survival of brain cells and the outcomes of AIS patients. However, no machine learning method has been applied to investigate the correlation between the dynamic evolution of intracerebral venous collateral circulation and AIS prognosis. Therefore, we employed a support vector machine (SVM) algorithm to analyze asymmetrically prominent cortical veins (APCVs) and deep medullary veins (DMVs) to establish a radiomic model for predicting the prognosis of AIS by combining clinical indicators. The magnetic resonance imaging (MRI) data and clinical indicators of 150 AIS patients were retrospectively analyzed. Regions of interest corresponding to the DMVs and APCVs were delineated, and least absolute shrinkage and selection operator (LASSO) regression was used to select features extracted from these regions. An APCV-DMV radiomic model was created via the SVM algorithm, and independent clinical risk factors associated with AIS were combined with the radiomic model to generate a joint model. The SVM algorithm was selected because of its proven efficacy in handling high-dimensional radiomic data compared with alternative classifiers (<i>e.g.</i>, random forest) in pilot experiments. Nine radiomic features associated with AIS patient outcomes were ultimately selected. In the internal training test set, the AUCs of the clinical, DMV-APCV radiomic and joint models were 0.816, 0.976 and 0.996, respectively. The DeLong test revealed that the predictive performance of the joint model was better than that of the individual models, with a test set AUC of 0.996, sensitivity of 0.905, and specificity of 1.000 (<i>P</i> < 0.05). Using radiomic methods, we propose a novel joint predictive model that combines the imaging histologic features of the APCV and DMV with clinical indicators. This model quantitatively characterizes the morphological and functional attributes of venous collateral circulation, elucidating its important role in accurately evaluating the prognosis of patients with AIS and providing a noninvasive and highly accurate imaging tool for early prognostic prediction.

The Role of Computed Tomography and Artificial Intelligence in Evaluating the Comorbidities of Chronic Obstructive Pulmonary Disease: A One-Stop CT Scanning for Lung Cancer Screening.

Lin X, Zhang Z, Zhou T, Li J, Jin Q, Li Y, Guan Y, Xia Y, Zhou X, Fan L

pubmed logopapersJan 1 2025
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Comorbidities in patients with COPD significantly increase morbidity, mortality, and healthcare costs, posing a significant burden on the management of COPD. Given the complex clinical manifestations and varying severity of COPD comorbidities, accurate diagnosis and evaluation are particularly important in selecting appropriate treatment options. With the development of medical imaging technology, AI-based chest CT, as a noninvasive imaging modality, provides a detailed assessment of COPD comorbidities. Recent studies have shown that certain radiographic features on chest CT can be used as alternative markers of comorbidities in COPD patients. CT-based radiomics features provided incremental predictive value than clinical risk factors only, predicting an AUC of 0.73 for COPD combined with CVD. However, AI has inherent limitations such as lack of interpretability, and further research is needed to improve them. This review evaluates the progress of AI technology combined with chest CT imaging in COPD comorbidities, including lung cancer, cardiovascular disease, osteoporosis, sarcopenia, excess adipose depots, and pulmonary hypertension, with the aim of improving the understanding of imaging and the management of COPD comorbidities for the purpose of improving disease screening, efficacy assessment, and prognostic evaluation.

Brain tumor classification using MRI images and deep learning techniques.

Wong Y, Su ELM, Yeong CF, Holderbaum W, Yang C

pubmed logopapersJan 1 2025
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes deep learning (DL) and Magnetic Resonance Imaging (MRI) images. The main purpose of this research is to develop a model that can accurately detect and classify different types of brain tumors, including glioma, meningioma, pituitary tumors, and normal brain scans. A convolutional neural network (CNN) architecture with pretrained VGG16 as the base model is employed, and diverse public datasets are utilized to ensure comprehensive representation. Data augmentation techniques are employed to enhance the training dataset, resulting in a total of 17,136 brain MRI images across the four classes. The accuracy of this model was 99.24%, a higher accuracy than other similar works, demonstrating its potential clinical utility. This higher accuracy was achieved mainly due to the utilization of a large and diverse dataset, the improvement of network configuration, the application of a fine-tuning strategy to adjust pretrained weights, and the implementation of data augmentation techniques in enhancing classification performance for brain tumor detection. In addition, a web application was developed by leveraging HTML and Dash components to enhance usability, allowing for easy image upload and tumor prediction. By harnessing artificial intelligence (AI), the developed system addresses the need to reduce human error and enhance diagnostic accuracy. The proposed approach provides an efficient and reliable solution for brain tumor classification, facilitating early diagnosis and enabling timely medical interventions. This work signifies a potential advancement in brain tumor classification, promising improved patient care and outcomes.

Investigating methods to enhance interpretability and performance in cardiac MRI for myocardial scarring diagnosis using convolutional neural network classification and One Match.

Udin MH, Armstrong S, Kai A, Doyle ST, Pokharel S, Ionita CN, Sharma UC

pubmed logopapersJan 1 2025
Machine learning (ML) classification of myocardial scarring in cardiac MRI is often hindered by limited explainability, particularly with convolutional neural networks (CNNs). To address this, we developed One Match (OM), an algorithm that builds on template matching to improve on both the explainability and performance of ML myocardial scaring classification. By incorporating OM, we aim to foster trust in AI models for medical diagnostics and demonstrate that improved interpretability does not have to compromise classification accuracy. Using a cardiac MRI dataset from 279 patients, this study evaluates One Match, which classifies myocardial scarring in images by matching each image to a set of labeled template images. It uses the highest correlation score from these matches for classification and is compared to a traditional sequential CNN. Enhancements such as autodidactic enhancement (AE) and patient-level classifications (PLCs) were applied to improve the predictive accuracy of both methods. Results are reported as follows: accuracy, sensitivity, specificity, precision, and F1-score. The highest classification performance was observed with the OM algorithm when enhanced by both AE and PLCs, 95.3% accuracy, 92.3% sensitivity, 96.7% specificity, 92.3% precision, and 92.3% F1-score, marking a significant improvement over the base configurations. AE alone had a positive impact on OM increasing accuracy from 89.0% to 93.2%, but decreased the accuracy of the CNN from 85.3% to 82.9%. In contrast, PLCs improved accuracy for both the CNN and OM, raising the CNN's accuracy by 4.2% and OM's by 7.4%. This study demonstrates the effectiveness of OM in classifying myocardial scars, particularly when enhanced with AE and PLCs. The interpretability of OM also enabled the examination of misclassifications, providing insights that could accelerate development and foster greater trust among clinical stakeholders.
Page 231 of 2332330 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.