Sort by:
Page 23 of 33324 results

Thymoma habitat segmentation and risk prediction model using CT imaging and K-means clustering.

Liang Z, Li J, He S, Li S, Cai R, Chen C, Zhang Y, Deng B, Wu Y

pubmed logopapersMay 19 2025
Thymomas, though rare, present a wide range of clinical behaviors, from indolent to aggressive forms, making accurate risk stratification crucial for treatment planning. Traditional methods such as histopathology and radiological assessments often lack the ability to capture tumor heterogeneity, which can impact prognosis. Radiomics, combined with machine learning, provides a method to extract and analyze quantitative imaging features, offering the potential to improve tumor classification and risk prediction. By segmenting tumors into distinct habitat zones, it becomes possible to assess intratumoral heterogeneity more effectively. This study employs radiomics and machine learning techniques to enhance thymoma risk prediction, aiming to improve diagnostic consistency and reduce variability in radiologists' assessments. This study aims to identify different habitat zones within thymomas through CT imaging feature analysis and to establish a predictive model to differentiate between high and low-risk thymomas. Additionally, the study explores how this model can assist radiologists. We obtained CT imaging data from 133 patients with thymoma who were treated at the Affiliated Hospital of Guangdong Medical University from 2015 to 2023. Images from the plain scan phase, venous phase, arterial phase, and their differential images (subtracted images) were used. Tumor regions were segmented into three habitat zones using K-Means clustering. Imaging features from each habitat zone were extracted using the PyRadiomics (van Griethuysen, 2017) library. The 28 most distinguishing features were selected through Mann-Whitney U tests (Mann, 1947) and Spearman's correlation analysis (Spearman, 1904). Five predictive models were built using the same machine learning algorithm (Support Vector Machine [SVM]): Habitat1, Habitat2, Habitat3 (trained on features from individual tumor habitat regions), Habitat All (trained on combined features from all regions), and Intra (trained on intratumoral features), and their performances were evaluated for comparison. The models' diagnostic outcomes were compared with the diagnoses of four radiologists (two junior and two experienced physicians). The AUC (area under curve) for habitat zone 1 was 0.818, for habitat zone 2 was 0.732, and for habitat zone 3 was 0.763. The comprehensive model, which combined data from all habitat zones, achieved an AUC of 0.960, outperforming the model based on traditional radiomic features (AUC of 0.720). The model significantly improved the diagnostic accuracy of all four radiologists. The AUCs for junior radiologists 1 and 2 increased from 0.747 and 0.775 to 0.932 and 0.972, respectively, while for experienced radiologists 1 and 2, the AUCs increased from 0.932 and 0.859 to 0.977 and 0.972, respectively. This study successfully identified distinct habitat zones within thymomas through CT imaging feature analysis and developed an efficient predictive model that significantly improved diagnostic accuracy. This model offers a novel tool for risk assessment of thymomas and can aid in guiding clinical decision-making.

Artificial intelligence based pulmonary vessel segmentation: an opportunity for automated three-dimensional planning of lung segmentectomy.

Mank QJ, Thabit A, Maat APWM, Siregar S, Van Walsum T, Kluin J, Sadeghi AH

pubmed logopapersMay 19 2025
This study aimed to develop an automated method for pulmonary artery and vein segmentation in both left and right lungs from computed tomography (CT) images using artificial intelligence (AI). The segmentations were evaluated using PulmoSR software, which provides 3D visualizations of patient-specific anatomy, potentially enhancing a surgeon's understanding of the lung structure. A dataset of 125 CT scans from lung segmentectomy patients at Erasmus MC was used. Manual annotations for pulmonary arteries and veins were created with 3D Slicer. nnU-Net models were trained for both lungs, assessed using Dice score, sensitivity, and specificity. Intraoperative recordings demonstrated clinical applicability. A paired t-test evaluated statistical significance of the differences between automatic and manual segmentations. The nnU-Net model, trained at full 3D resolution, achieved a mean Dice score between 0.91 and 0.92. The mean sensitivity and specificity were: left artery: 0.86 and 0.99, right artery: 0.84 and 0.99, left vein: 0.85 and 0.99, right vein: 0.85 and 0.99. The automatic method reduced segmentation time from ∼1.5 hours to under 5 min. Five cases were evaluated to demonstrate how the segmentations support lung segmentectomy procedures. P-values for Dice scores were all below 0.01, indicating statistical significance. The nnU-Net models successfully performed automatic segmentation of pulmonary arteries and veins in both lungs. When integrated with visualization tools, these automatic segmentations can enhance preoperative and intraoperative planning by providing detailed 3D views of patients anatomy.

Effect of low-dose colchicine on pericoronary inflammation and coronary plaque composition in chronic coronary disease: a subanalysis of the LoDoCo2 trial.

Fiolet ATL, Lin A, Kwiecinski J, Tutein Nolthenius J, McElhinney P, Grodecki K, Kietselaer B, Opstal TS, Cornel JH, Knol RJ, Schaap J, Aarts RAHM, Tutein Nolthenius AMFA, Nidorf SM, Velthuis BK, Dey D, Mosterd A

pubmed logopapersMay 19 2025
Low-dose colchicine (0.5 mg once daily) reduces the risk of major cardiovascular events in coronary disease, but its mechanism of action is not yet fully understood. We investigated whether low-dose colchicine is associated with changes in pericoronary inflammation and plaque composition in patients with chronic coronary disease. We performed a cross-sectional, nationwide, subanalysis of the Low-Dose Colchicine 2 Trial (LoDoCo2, n=5522). CT angiography studies were performed in 151 participants randomised to colchicine or placebo coronary after a median treatment duration of 28.2 months. Pericoronary adipose tissue (PCAT) attenuation measurements around proximal coronary artery segments and quantitative plaque analysis for the entire coronary tree were performed using artificial intelligence-enabled plaque analysis software. Median PCAT attenuation was not significantly different between the two groups (-79.5 Hounsfield units (HU) for colchicine versus -78.7 HU for placebo, p=0.236). Participants assigned to colchicine had a higher volume (169.6 mm<sup>3</sup> vs 113.1 mm<sup>3</sup>, p=0.041) and burden (9.6% vs 7.0%, p=0.035) of calcified plaque, and higher volume of dense calcified plaque (192.8 mm<sup>3</sup> vs 144.3 mm<sup>3</sup>, p=0.048) compared with placebo, independent of statin therapy. Colchicine treatment was associated with a lower burden of low-attenuation plaque in participants on a low-intensity statin, but not in those on a high-intensity statin (p<sub>interaction</sub>=0.037). Pericoronary inflammation did not differ among participants who received low-dose colchicine compared with placebo. Low-dose colchicine was associated with a higher volume of calcified plaque, particularly dense calcified plaque, which is considered a feature of plaque stability.

Semiautomated segmentation of breast tumor on automatic breast ultrasound image using a large-scale model with customized modules.

Zhou Y, Ye M, Ye H, Zeng S, Shu X, Pan Y, Wu A, Liu P, Zhang G, Cai S, Chen S

pubmed logopapersMay 19 2025
To verify the capability of the Segment Anything Model for medical images in 3D (SAM-Med3D), tailored with low-rank adaptation (LoRA) strategies, in segmenting breast tumors in Automated Breast Ultrasound (ABUS) images. This retrospective study collected data from 329 patients diagnosed with breast cancer (average age 54 years). The dataset was randomly divided into training (n = 204), validation (n = 29), and test sets (n = 59). Two experienced radiologists manually annotated the regions of interest of each sample in the dataset, which served as ground truth for training and evaluating the SAM-Med3D model with additional customized modules. For semi-automatic tumor segmentation, points were randomly sampled within the lesion areas to simulate the radiologists' clicks in real-world scenarios. The segmentation performance was evaluated using the Dice coefficient. A total of 492 cases (200 from the "Tumor Detection, Segmentation, and Classification Challenge on Automated 3D Breast Ultrasound (TDSC-ABUS) 2023 challenge") were subjected to semi-automatic segmentation inference. The average Dice Similariy Coefficient (DSC) scores for the training, validation, and test sets of the Lishui dataset were 0.75, 0.78, and 0.75, respectively. The Breast Imaging Reporting and Data System (BI-RADS) categories of all samples range from BI-RADS 3 to 6, yielding an average DSC coefficient between 0.73 and 0.77. By categorizing the samples (lesion volumes ranging from 1.64 to 100.03 cm<sup>3</sup>) based on lesion size, the average DSC falls between 0.72 and 0.77.And the overall average DSC for the TDSC-ABUS 2023 challenge dataset was 0.79, with the test set achieving a sora-of-art scores of 0.79. The SAM-Med3D model with additional customized modules demonstrates good performance in semi-automatic 3D ABUS breast cancer tumor segmentation, indicating its feasibility for application in computer-aided diagnosis systems.

Current trends and emerging themes in utilizing artificial intelligence to enhance anatomical diagnostic accuracy and efficiency in radiotherapy.

Pezzino S, Luca T, Castorina M, Puleo S, Castorina S

pubmed logopapersMay 19 2025
Artificial intelligence (AI) incorporation into healthcare has proven revolutionary, especially in radiotherapy, where accuracy is critical. The purpose of the study is to present patterns and develop topics in the application of AI to improve the precision of anatomical diagnosis, delineation of organs, and therapeutic effectiveness in radiation and radiological imaging. We performed a bibliometric analysis of scholarly articles in the fields starting in 2014. Through an examination of research output from key contributing nations and institutions, an analysis of notable research subjects, and an investigation of trends in scientific terminology pertaining to AI in radiology and radiotherapy. Furthermore, we examined software solutions based on AI in these domains, with a specific emphasis on extracting anatomical features and recognizing organs for the purpose of treatment planning. Our investigation found a significant surge in papers pertaining to AI in the fields since 2014. Institutions such as Emory University and Memorial Sloan-Kettering Cancer Center made substantial contributions to the development of the United States and China as leading research-producing nations. Key study areas encompassed adaptive radiation informed by anatomical alterations, MR-Linac for enhanced vision of soft tissues, and multi-organ segmentation for accurate planning of radiotherapy. An evident increase in the frequency of phrases such as 'radiomics,' 'radiotherapy segmentation,' and 'dosiomics' was noted. The evaluation of AI-based software revealed a wide range of uses in several subdisciplinary fields of radiation and radiology, particularly in improving the identification of anatomical features for treatment planning and identifying organs at risk. The incorporation of AI in anatomical diagnosis in radiological imaging and radiotherapy is progressing rapidly, with substantial capacity to transform the precision of diagnoses and the effectiveness of treatment planning.

Segmentation of temporomandibular joint structures on mri images using neural networks for diagnosis of pathologies

Maksim I. Ivanov, Olga E. Mendybaeva, Yuri E. Karyakin, Igor N. Glukhikh, Aleksey V. Lebedev

arxiv logopreprintMay 19 2025
This article explores the use of artificial intelligence for the diagnosis of pathologies of the temporomandibular joint (TMJ), in particular, for the segmentation of the articular disc on MRI images. The relevance of the work is due to the high prevalence of TMJ pathologies, as well as the need to improve the accuracy and speed of diagnosis in medical institutions. During the study, the existing solutions (Diagnocat, MandSeg) were analyzed, which, as a result, are not suitable for studying the articular disc due to the orientation towards bone structures. To solve the problem, an original dataset was collected from 94 images with the classes "temporomandibular joint" and "jaw". To increase the amount of data, augmentation methods were used. After that, the models of U-Net, YOLOv8n, YOLOv11n and Roboflow neural networks were trained and compared. The evaluation was carried out according to the Dice Score, Precision, Sensitivity, Specificity, and Mean Average Precision metrics. The results confirm the potential of using the Roboflow model for segmentation of the temporomandibular joint. In the future, it is planned to develop an algorithm for measuring the distance between the jaws and determining the position of the articular disc, which will improve the diagnosis of TMJ pathologies.

New approaches to lesion assessment in multiple sclerosis.

Preziosa P, Filippi M, Rocca MA

pubmed logopapersMay 19 2025
To summarize recent advancements in artificial intelligence-driven lesion segmentation and novel neuroimaging modalities that enhance the identification and characterization of multiple sclerosis (MS) lesions, emphasizing their implications for clinical use and research. Artificial intelligence, particularly deep learning approaches, are revolutionizing MS lesion assessment and segmentation, improving accuracy, reproducibility, and efficiency. Artificial intelligence-based tools now enable automated detection not only of T2-hyperintense white matter lesions, but also of specific lesion subtypes, including gadolinium-enhancing, central vein sign-positive, paramagnetic rim, cortical, and spinal cord lesions, which hold diagnostic and prognostic value. Novel neuroimaging techniques such as quantitative susceptibility mapping (QSM), χ-separation imaging, and soma and neurite density imaging (SANDI), together with PET, are providing deeper insights into lesion pathology, better disentangling their heterogeneities and clinical relevance. Artificial intelligence-powered lesion segmentation tools hold great potential for improving fast, accurate and reproducible lesional assessment in the clinical scenario, thus improving MS diagnosis, monitoring, and treatment response assessment. Emerging neuroimaging modalities may contribute to advance the understanding MS pathophysiology, provide more specific markers of disease progression, and novel potential therapeutic targets.

Federated Learning for Renal Tumor Segmentation and Classification on Multi-Center MRI Dataset.

Nguyen DT, Imami M, Zhao LM, Wu J, Borhani A, Mohseni A, Khunte M, Zhong Z, Shi V, Yao S, Wang Y, Loizou N, Silva AC, Zhang PJ, Zhang Z, Jiao Z, Kamel I, Liao WH, Bai H

pubmed logopapersMay 19 2025
Deep learning (DL) models for accurate renal tumor characterization may benefit from multi-center datasets for improved generalizability; however, data-sharing constraints necessitate privacy-preserving solutions like federated learning (FL). To assess the performance and reliability of FL for renal tumor segmentation and classification in multi-institutional MRI datasets. Retrospective multi-center study. A total of 987 patients (403 female) from six hospitals were included for analysis. 73% (723/987) had malignant renal tumors, primarily clear cell carcinoma (n = 509). Patients were split into training (n = 785), validation (n = 104), and test (n = 99) sets, stratified across three simulated institutions. MRI was performed at 1.5 T and 3 T using T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences. FL and non-FL approaches used nnU-Net for tumor segmentation and ResNet for its classification. FL-trained models across three simulated institutional clients with central weight aggregation, while the non-FL approach used centralized training on the full dataset. Segmentation was evaluated using Dice coefficients, and classification between malignant and benign lesions was assessed using accuracy, sensitivity, specificity, and area under the curves (AUCs). FL and non-FL performance was compared using the Wilcoxon test for segmentation Dice and Delong's test for AUC (p < 0.05). No significant difference was observed between FL and non-FL models in segmentation (Dice: 0.43 vs. 0.45, p = 0.202) or classification (AUC: 0.69 vs. 0.64, p = 0.959) on the test set. For classification, no significant difference was observed between the models in accuracy (p = 0.912), sensitivity (p = 0.862), or specificity (p = 0.847) on the test set. FL demonstrated comparable performance to non-FL approaches in renal tumor segmentation and classification, supporting its potential as a privacy-preserving alternative for multi-institutional DL models. 4. Stage 2.

Attention-Enhanced U-Net for Accurate Segmentation of COVID-19 Infected Lung Regions in CT Scans

Amal Lahchim, Lazar Davic

arxiv logopreprintMay 18 2025
In this study, we propose a robust methodology for automatic segmentation of infected lung regions in COVID-19 CT scans using convolutional neural networks. The approach is based on a modified U-Net architecture enhanced with attention mechanisms, data augmentation, and postprocessing techniques. It achieved a Dice coefficient of 0.8658 and mean IoU of 0.8316, outperforming other methods. The dataset was sourced from public repositories and augmented for diversity. Results demonstrate superior segmentation performance. Future work includes expanding the dataset, exploring 3D segmentation, and preparing the model for clinical deployment.

SMURF: Scalable method for unsupervised reconstruction of flow in 4D flow MRI

Atharva Hans, Abhishek Singh, Pavlos Vlachos, Ilias Bilionis

arxiv logopreprintMay 18 2025
We introduce SMURF, a scalable and unsupervised machine learning method for simultaneously segmenting vascular geometries and reconstructing velocity fields from 4D flow MRI data. SMURF models geometry and velocity fields using multilayer perceptron-based functions incorporating Fourier feature embeddings and random weight factorization to accelerate convergence. A measurement model connects these fields to the observed image magnitude and phase data. Maximum likelihood estimation and subsampling enable SMURF to process high-dimensional datasets efficiently. Evaluations on synthetic, in vitro, and in vivo datasets demonstrate SMURF's performance. On synthetic internal carotid artery aneurysm data derived from CFD, SMURF achieves a quarter-voxel segmentation accuracy across noise levels of up to 50%, outperforming the state-of-the-art segmentation method by up to double the accuracy. In an in vitro experiment on Poiseuille flow, SMURF reduces velocity reconstruction RMSE by approximately 34% compared to raw measurements. In in vivo internal carotid artery aneurysm data, SMURF attains nearly half-voxel segmentation accuracy relative to expert annotations and decreases median velocity divergence residuals by about 31%, with a 27% reduction in the interquartile range. These results indicate that SMURF is robust to noise, preserves flow structure, and identifies patient-specific morphological features. SMURF advances 4D flow MRI accuracy, potentially enhancing the diagnostic utility of 4D flow MRI in clinical applications.
Page 23 of 33324 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.