Sort by:
Page 23 of 45448 results

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

Lymph node ultrasound in lymphoproliferative disorders: clinical characteristics and applications.

Tavarozzi R, Lombardi A, Scarano F, Staiano L, Trattelli G, Farro M, Castellino A, Coppola C

pubmed logopapersJun 3 2025
Superficial lymph node (LN) enlargement is a common ultrasonographic finding and can be associated with a broad spectrum of conditions, from benign reactive hyperplasia to malignant lymphoproliferative disorders (LPDs). LPDs, which include various hematologic malignancies affecting lymphoid tissue, present with diverse immune-morphological and clinical features, making differentiation from other malignant causes of lymphadenopathy challenging. Radiologic assessment is crucial in characterizing lymphadenopathy, with ultrasonography serving as a noninvasive and widely available imaging modality. High-resolution ultrasound allows the evaluation of key features such as LN size, shape, border definition, echogenicity, and the presence of abnormal cortical thickening, loss of the fatty hilum, or altered vascular patterns, which aid in distinguishing benign from malignant processes. This review aims to describe the ultrasonographic characteristics of lymphadenopathy, offering essential diagnostic insights to differentiate malignant disorders, particularly LPDs. We will discuss standard ultrasound techniques, including grayscale imaging and Doppler ultrasound, and explore more advanced methods such as contrast-enhanced ultrasound (CEUS), elastography, and artificial intelligence-assisted imaging, which are gaining prominence in LN evaluation. By highlighting these imaging modalities, we aim to enhance the diagnostic accuracy of ultrasonography in lymphadenopathy assessment and improve early detection of LPDs and other malignant conditions.

Machine learning model for preoperative classification of stromal subtypes in salivary gland pleomorphic adenoma based on ultrasound histogram analysis.

Su HZ, Yang DH, Hong LC, Wu YH, Yu K, Zhang ZB, Zhang XD

pubmed logopapersJun 3 2025
Accurate preoperative discrimination of salivary gland pleomorphic adenoma (SPA) stromal subtypes is essential for therapeutic plannings. We aimed to establish and test machine learning (ML) models for classification of stromal subtypes in SPA based on ultrasound histogram analysis. A total of 256 SPA patients were enrolled in the study and categorized into two groups: stroma-low and stroma-high. The dataset was split into a training cohort with 177 patients and a validation cohort with 79 patients. The least absolute shrinkage and selection operator (LASSO) regression identified optimal features, which were then utilized to build predictive models using logistic regression (LR) and eight ML algorithms. The effectiveness of the models was evaluated using a range of performance metrics, with a particular focus on the area under the receiver operating characteristic curve (AUC). After LASSO regression, six key features (lesion size, shape, cystic areas, vascularity, mean, and skewness) were selected to develop predictive models. The AUCs ranged from 0.575 to 0.827 for the nine models. The support vector machine (SVM) algorithm achieved the highest performance with an AUC of 0.827, accompanied by an accuracy of 0.798, precision of 0.792, recall of 0.862, and an F1 score of 0.826. The LR algorithm also exhibited robust performance, achieving an AUC of 0.818, slightly trailing behind the SVM algorithm. Decision curve analysis indicated that the SVM-based model provided superior clinical utility compared to other models. The ML model based on ultrasound histogram analysis offers a precise and non-invasive approach for preoperative categorization of stromal subtypes in SPA.

Deep learning model for differentiating thyroid eye disease and orbital myositis on computed tomography (CT) imaging.

Ha SK, Lin LY, Shi M, Wang M, Han JY, Lee NG

pubmed logopapersJun 3 2025
To develop a deep learning model using orbital computed tomography (CT) imaging to accurately distinguish thyroid eye disease (TED) and orbital myositis, two conditions with overlapping clinical presentations. Retrospective, single-center cohort study spanning 12 years including normal controls, TED, and orbital myositis patients with orbital imaging and examination by an oculoplastic surgeon. A deep learning model employing a Visual Geometry Group-16 network was trained on various binary combinations of TED, orbital myositis, and controls using single slices of coronal orbital CT images. A total of 1628 images from 192 patients (110 TED, 51 orbital myositis, 31 controls) were included. The primary model comparing orbital myositis and TED had accuracy of 98.4% and area under the receiver operating characteristic curve (AUC) of 0.999. In detecting orbital myositis, it had a sensitivity, specificity, and F1 score of 0.964, 0.994, and 0.984, respectively. Deep learning models can differentiate TED and orbital myositis based on a single, coronal orbital CT image with high accuracy. Their ability to distinguish these conditions based not only on extraocular muscle enlargement but also other salient features suggests potential applications in diagnostics and treatment beyond these conditions.

Co-Evidential Fusion with Information Volume for Medical Image Segmentation

Yuanpeng He, Lijian Li, Tianxiang Zhan, Chi-Man Pun, Wenpin Jiao, Zhi Jin

arxiv logopreprintJun 3 2025
Although existing semi-supervised image segmentation methods have achieved good performance, they cannot effectively utilize multiple sources of voxel-level uncertainty for targeted learning. Therefore, we propose two main improvements. First, we introduce a novel pignistic co-evidential fusion strategy using generalized evidential deep learning, extended by traditional D-S evidence theory, to obtain a more precise uncertainty measure for each voxel in medical samples. This assists the model in learning mixed labeled information and establishing semantic associations between labeled and unlabeled data. Second, we introduce the concept of information volume of mass function (IVUM) to evaluate the constructed evidence, implementing two evidential learning schemes. One optimizes evidential deep learning by combining the information volume of the mass function with original uncertainty measures. The other integrates the learning pattern based on the co-evidential fusion strategy, using IVUM to design a new optimization objective. Experiments on four datasets demonstrate the competitive performance of our method.

PARADIM: A Platform to Support Research at the Interface of Data Science and Medical Imaging.

Lemaréchal Y, Couture G, Pelletier F, Lefol R, Asselin PL, Ouellet S, Bernard J, Ebrahimpour L, Manem VSK, Topalis J, Schachtner B, Jodogne S, Joubert P, Jeblick K, Ingrisch M, Després P

pubmed logopapersJun 3 2025
This paper describes PARADIM, a digital infrastructure designed to support research at the interface of data science and medical imaging, with a focus on Research Data Management best practices. The platform is built from open-source components and rooted in the FAIR principles through strict compliance with the DICOM standard. It addresses key needs in data curation, governance, privacy, and scalable resource management. Supporting every stage of the data science discovery cycle, the platform offers robust functionalities for user identity and access management, data de-identification, storage, annotation, as well as model training and evaluation. Rich metadata are generated all along the research lifecycle to ensure the traceability and reproducibility of results. PARADIM hosts several medical image collections and allows the automation of large-scale, computationally intensive pipelines (e.g., automatic segmentation, dose calculations, AI model evaluation). The platform fills a gap at the interface of data science and medical imaging, where digital infrastructures are key in the development, evaluation, and deployment of innovative solutions in the real world.

Robust multi-coil MRI reconstruction via self-supervised denoising.

Aali A, Arvinte M, Kumar S, Arefeen YI, Tamir JI

pubmed logopapersJun 2 2025
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2-weighted brain data, and 24, 14, and 4 dB for fat-suppressed knee data. We showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.

Disease-Grading Networks with Asymmetric Gaussian Distribution for Medical Imaging.

Tang W, Yang Z

pubmed logopapersJun 2 2025
Deep learning-based disease grading technologies facilitate timely medical intervention due to their high efficiency and accuracy. Recent advancements have enhanced grading performance by incorporating the ordinal relationships of disease labels. However, existing methods often assume same probability distributions for disease labels across instances within the same category, overlooking variations in label distributions. Additionally, the hyperparameters of these distributions are typically determined empirically, which may not accurately reflect the true distribution. To address these limitations, we propose a disease grading network utilizing a sample-aware asymmetric Gaussian label distribution, termed DGN-AGLD. This approach includes a variance predictor designed to learn and predict parameters that control the asymmetry of the Gaussian distribution, enabling distinct label distributions within the same category. This module can be seamlessly integrated into standard deep learning networks. Experimental results on four disease datasets validate the effectiveness and superiority of the proposed method, particularly on the IDRiD dataset, where it achieves a diabetic retinopathy accuracy of 77.67%. Furthermore, our method extends to joint disease grading tasks, yielding superior results and demonstrating significant generalization capabilities. Visual analysis indicates that our method more accurately captures the trend of disease progression by leveraging the asymmetry in label distribution. Our code is publicly available on https://github.com/ahtwq/AGNet.

Robust Uncertainty-Informed Glaucoma Classification Under Data Shift.

Rashidisabet H, Chan RVP, Leiderman YI, Vajaranant TS, Yi D

pubmed logopapersJun 2 2025
Standard deep learning (DL) models often suffer significant performance degradation on out-of-distribution (OOD) data, where test data differs from training data, a common challenge in medical imaging due to real-world variations. We propose a unified self-censorship framework as an alternative to the standard DL models for glaucoma classification using deep evidential uncertainty quantification. Our approach detects OOD samples at both the dataset and image levels. Dataset-level self-censorship enables users to accept or reject predictions for an entire new dataset based on model uncertainty, whereas image-level self-censorship refrains from making predictions on individual OOD images rather than risking incorrect classifications. We validated our approach across diverse datasets. Our dataset-level self-censorship method outperforms the standard DL model in OOD detection, achieving an average 11.93% higher area under the curve (AUC) across 14 OOD datasets. Similarly, our image-level self-censorship model improves glaucoma classification accuracy by an average of 17.22% across 4 external glaucoma datasets against baselines while censoring 28.25% more data. Our approach addresses the challenge of generalization in standard DL models for glaucoma classification across diverse datasets by selectively withholding predictions when the model is uncertain. This method reduces misclassification errors compared to state-of-the-art baselines, particularly for OOD cases. This study introduces a tunable framework that explores the trade-off between prediction accuracy and data retention in glaucoma prediction. By managing uncertainty in model outputs, the approach lays a foundation for future decision support tools aimed at improving the reliability of automated glaucoma diagnosis.
Page 23 of 45448 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.