Sort by:
Page 23 of 24239 results

Groupwise image registration with edge-based loss for low-SNR cardiac MRI.

Lei X, Schniter P, Chen C, Ahmad R

pubmed logopapersMay 12 2025
The purpose of this study is to perform image registration and averaging of multiple free-breathing single-shot cardiac images, where the individual images may have a low signal-to-noise ratio (SNR). To address low SNR encountered in single-shot imaging, especially at low field strengths, we propose a fast deep learning (DL)-based image registration method, called Averaging Morph with Edge Detection (AiM-ED). AiM-ED jointly registers multiple noisy source images to a noisy target image and utilizes a noise-robust pre-trained edge detector to define the training loss. We validate AiM-ED using synthetic late gadolinium enhanced (LGE) images from the MR extended cardiac-torso (MRXCAT) phantom and free-breathing single-shot LGE images from healthy subjects (24 slices) and patients (5 slices) under various levels of added noise. Additionally, we demonstrate the clinical feasibility of AiM-ED by applying it to data from patients (6 slices) scanned on a 0.55T scanner. Compared with a traditional energy-minimization-based image registration method and DL-based VoxelMorph, images registered using AiM-ED exhibit higher values of recovery SNR and three perceptual image quality metrics. An ablation study shows the benefit of both jointly processing multiple source images and using an edge map in AiM-ED. For single-shot LGE imaging, AiM-ED outperforms existing image registration methods in terms of image quality. With fast inference, minimal training data requirements, and robust performance at various noise levels, AiM-ED has the potential to benefit single-shot CMR applications.

[Pulmonary vascular interventions: innovating through adaptation and advancing through differentiation].

Li J, Wan J

pubmed logopapersMay 12 2025
Pulmonary vascular intervention technology, with its minimally invasive and precise advantages, has been a groundbreaking advancement in the treatment of pulmonary vascular diseases. Techniques such as balloon pulmonary angioplasty (BPA), pulmonary artery stenting, and percutaneous pulmonary artery denervation (PADN) have significantly improved the prognoses for conditions such as chronic thromboembolic pulmonary hypertension (CTEPH), pulmonary artery stenosis, and pulmonary arterial hypertension (PAH). Although based on coronary intervention (PCI) techniques such as guidewire manipulation and balloon dilatation, pulmonary vascular interventions require specific modifications to address the unique characteristics of the pulmonary circulation, low pressure, thin-walled vessels, and complex branching, to mitigate risks of perforation and thrombosis. Future directions include the development of dedicated instruments, multi-modality imaging guidance, artificial intelligence-assisted procedures, and molecular interventional therapies. These innovations aim to establish an independent theoretical framework for pulmonary vascular interventions, facilitating their transition from "adjuvant therapies" to "core treatments" in clinical practice.

Error correcting 2D-3D cascaded network for myocardial infarct scar segmentation on late gadolinium enhancement cardiac magnetic resonance images.

Schwab M, Pamminger M, Kremser C, Obmann D, Haltmeier M, Mayr A

pubmed logopapersMay 10 2025
Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging is considered the in vivo reference standard for assessing infarct size (IS) and microvascular obstruction (MVO) in ST-elevation myocardial infarction (STEMI) patients. However, the exact quantification of those markers of myocardial infarct severity remains challenging and very time-consuming. As LGE distribution patterns can be quite complex and hard to delineate from the blood pool or epicardial fat, automatic segmentation of LGE CMR images is challenging. In this work, we propose a cascaded framework of two-dimensional and three-dimensional convolutional neural networks (CNNs) which enables to calculate the extent of myocardial infarction in a fully automated way. By artificially generating segmentation errors which are characteristic for 2D CNNs during training of the cascaded framework we are enforcing the detection and correction of 2D segmentation errors and hence improve the segmentation accuracy of the entire method. The proposed method was trained and evaluated on two publicly available datasets. We perform comparative experiments where we show that our framework outperforms state-of-the-art reference methods in segmentation of myocardial infarction. Furthermore, in extensive ablation studies we show the advantages that come with the proposed error correcting cascaded method. The code of this project is publicly available at https://github.com/matthi99/EcorC.git.

Performance of fully automated deep-learning-based coronary artery calcium scoring in ECG-gated calcium CT and non-gated low-dose chest CT.

Kim S, Park EA, Ahn C, Jeong B, Lee YS, Lee W, Kim JH

pubmed logopapersMay 10 2025
This study aimed to validate the agreement and diagnostic performance of a deep-learning-based coronary artery calcium scoring (DL-CACS) system for ECG-gated and non-gated low-dose chest CT (LDCT) across multivendor datasets. In this retrospective study, datasets from Seoul National University Hospital (SNUH, 652 paired ECG-gated and non-gated CT scans) and the Stanford public dataset (425 ECG-gated and 199 non-gated CT scans) were analyzed. Agreement metrics included intraclass correlation coefficient (ICC), coefficient of determination (R²), and categorical agreement (κ). Diagnostic performance was assessed using categorical accuracy and the area under the receiver operating characteristic curve (AUROC). DL-CACS demonstrated excellent performance for ECG-gated CT in both datasets (SNUH: R² = 0.995, ICC = 0.997, κ = 0.97, AUROC = 0.99; Stanford: R² = 0.989, ICC = 0.990, κ = 0.97, AUROC = 0.99). For non-gated CT using manual LDCT CAC scores as a reference, performance was similarly high (R² = 0.988, ICC = 0.994, κ = 0.96, AUROC = 0.98-0.99). When using ECG-gated CT scores as the reference, performance for non-gated CT was slightly lower but remained robust (SNUH: R² = 0.948, ICC = 0.968, κ = 0.88, AUROC = 0.98-0.99; Stanford: R² = 0.949, ICC = 0.948, κ = 0.71, AUROC = 0.89-0.98). DL-CACS provides a reliable and automated solution for CACS, potentially reducing workload while maintaining robust performance in both ECG-gated and non-gated CT settings. Question How accurate and reliable is deep-learning-based coronary artery calcium scoring (DL-CACS) in ECG-gated CT and non-gated low-dose chest CT (LDCT) across multivendor datasets? Findings DL-CACS showed near-perfect performance for ECG-gated CT. For non-gated LDCT, performance was excellent using manual scores as the reference and lower but reliable when using ECG-gated CT scores. Clinical relevance DL-CACS provides a reliable and automated solution for CACS, potentially reducing workload and improving diagnostic workflow. It supports cardiovascular risk stratification and broader clinical adoption, especially in settings where ECG-gated CT is unavailable.

Application of Artificial Intelligence in Cardio-Oncology Imaging for Cancer Therapy-Related Cardiovascular Toxicity: Systematic Review.

Mushcab H, Al Ramis M, AlRujaib A, Eskandarani R, Sunbul T, AlOtaibi A, Obaidan M, Al Harbi R, Aljabri D

pubmed logopapersMay 9 2025
Artificial intelligence (AI) is a revolutionary tool yet to be fully integrated into several health care sectors, including medical imaging. AI can transform how medical imaging is conducted and interpreted, especially in cardio-oncology. This study aims to systematically review the available literature on the use of AI in cardio-oncology imaging to predict cardiotoxicity and describe the possible improvement of different imaging modalities that can be achieved if AI is successfully deployed to routine practice. We conducted a database search in PubMed, Ovid MEDLINE, Cochrane Library, CINAHL, and Google Scholar from inception to 2023 using the AI research assistant tool (Elicit) to search for original studies reporting AI outcomes in adult patients diagnosed with any cancer and undergoing cardiotoxicity assessment. Outcomes included incidence of cardiotoxicity, left ventricular ejection fraction, risk factors associated with cardiotoxicity, heart failure, myocardial dysfunction, signs of cancer therapy-related cardiovascular toxicity, echocardiography, and cardiac magnetic resonance imaging. Descriptive information about each study was recorded, including imaging technique, AI model, outcomes, and limitations. The systematic search resulted in 7 studies conducted between 2018 and 2023, which are included in this review. Most of these studies were conducted in the United States (71%), included patients with breast cancer (86%), and used magnetic resonance imaging as the imaging modality (57%). The quality assessment of the studies had an average of 86% compliance in all of the tool's sections. In conclusion, this systematic review demonstrates the potential of AI to enhance cardio-oncology imaging for predicting cardiotoxicity in patients with cancer. Our findings suggest that AI can enhance the accuracy and efficiency of cardiotoxicity assessments. However, further research through larger, multicenter trials is needed to validate these applications and refine AI technologies for routine use, paving the way for improved patient outcomes in cancer survivors at risk of cardiotoxicity.

A myocardial reorientation method based on feature point detection for quantitative analysis of PET myocardial perfusion imaging.

Shang F, Huo L, Gong T, Wang P, Shi X, Tang X, Liu S

pubmed logopapersMay 8 2025
Reorienting cardiac positron emission tomography (PET) images to the transaxial plane is essential for cardiac PET image analysis. This study aims to design a convolutional neural network (CNN) for automatic reorientation and evaluate its generalizability. An artificial intelligence (AI) method integrating U-Net and the differentiable spatial to numeric transform module (DSNT-U) was proposed to automatically position three feature points (P<sub>apex</sub>, P<sub>base</sub>, and P<sub>RV</sub>), with these three points manually located by an experienced radiologist as the reference standard (RS). A second radiologist performed manual location for reproducibility evaluation. The DSNT-U, initially trained and tested on a [<sup>11</sup>C]acetate dataset (training/testing: 40/17), was further compared with a CNN-spatial transformer network (CNN-STN). The network fine-tuned with 4 subjects was tested on a [<sup>13</sup>N]ammonia dataset (n = 30). The performance of the DSNT-U was evaluated in terms of coordinates, volume, and quantitative indexes (pharmacokinetic parameters and total perfusion deficit). The proposed DSNT-U successfully achieved automatic myocardial reorientation for both [<sup>11</sup>C]acetate and [<sup>13</sup>N]ammonia datasets. For the former dataset, the intraclass correlation coefficients (ICCs) between the coordinates predicted by the DSNT-U and the RS exceeded 0.876. The average normalized mean squared error (NMSE) between the short-axis (SA) images obtained through DSNT-U-based reorientation and the reference SA images was 0.051 ± 0.043. For pharmacokinetic parameters, the R² between the DSNT-U and the RS was larger than 0.968. Compared with the CNN-STN, the DSNT-U demonstrated a higher ICC between the estimated rigid transformation parameters and the RS. After fine-tuning on the [<sup>13</sup>N]ammonia dataset, the average NMSE between the SA images reoriented by the DSNT-U and the reference SA images was 0.056 ± 0.046. The ICC between the total perfusion deficit (TPD) values computed from DSNT-U-derived images and the reference values was 0.981. Furthermore, no significant differences were observed in the performance of the DSNT-U prediction among subjects with different genders or varying myocardial perfusion defect (MPD) statuses. The proposed DSNT-U can accurately position P<sub>apex</sub>, P<sub>base</sub>, and P<sub>RV</sub> on the [<sup>11</sup>C]acetate dataset. After fine-tuning, the positioning model can be applied to the [<sup>13</sup>N]ammonia perfusion dataset, demonstrating good generalization performance. This method can adapt to data of different genders (with or without MPD) and different tracers, displaying the potential to replace manual operations.

Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study.

Hong X, Sanaat A, Salimi Y, Nkoulou R, Arabi H, Lu L, Zaidi H

pubmed logopapersMay 8 2025
Cardiac perfusion PET is commonly used to assess ischemia and cardiovascular risk, which enables quantitative measurements of myocardial blood flow (MBF) through kinetic modeling. However, the estimation of kinetic parameters is challenging due to the noisy nature of short dynamic frames and limited sample data points. This work aimed to investigate the errors in MBF estimation in PET through a simulation study and to evaluate different parameter estimation approaches, including a deep learning (DL) method. Simulated studies were generated using digital phantoms based on cardiac segmentations from 55 clinical CT images. We employed the irreversible 2-tissue compartmental model and simulated dynamic <sup>13</sup>N-ammonia PET scans under both rest and stress conditions (220 cases each). The simulations covered a rest K<sub>1</sub> range of 0.6 to 1.2 and a stress K<sub>1</sub> range of 1.2 to 3.6 (unit: mL/min/g) in the myocardium. A transformer-based DL model was trained on the simulated dataset to predict parametric images (PIMs) from noisy PET image frames and was validated using 5-fold cross-validation. We compared the DL method with the voxel-wise nonlinear least squares (NLS) fitting applied to the dynamic images, using either Gaussian filter (GF) smoothing (GF-NLS) or a dynamic nonlocal means (DNLM) algorithm for denoising (DNLM-NLS). Two patients with coronary CT angiography (CTA) and fractional flow reserve (FFR) were enrolled to test the feasibility of applying DL models on clinical PET data. The DL method showed clearer image structures with reduced noise compared to the traditional NLS-based methods. In terms of mean absolute relative error (MARE), as the rest K<sub>1</sub> values increased from 0.6 to 1.2 mL/min/g, the overall bias in myocardium K<sub>1</sub> estimates decreased from approximately 58% to 45% for the NLS-based methods while the DL method showed a reduction in MARE from 42% to 18%. For stress data, as the stress K<sub>1</sub> decreased from 3.6 to 1.2 mL/min/g, the MARE increased from 30% to 70% for the GF-NLS method. In contrast, both the DNLM-NLS (average: 42%) and the DL methods (average: 20%) demonstrated significantly smaller MARE changes as stress K<sub>1</sub> varied. Regarding the regional mean bias (±standard deviation), the GF-NLS method had a bias of 6.30% (±8.35%) of rest K<sub>1</sub>, compared to 1.10% (±8.21%) for DNLM-NLS and 6.28% (±14.05%) for the DL method. For the stress K<sub>1</sub>, the GF-NLS showed a mean bias of 10.72% (±9.34%) compared to 1.69% (±8.82%) for DNLM-NLS and -10.55% (±9.81%) for the DL method. This study showed that an increase in the tracer uptake rate (K<sub>1</sub>) corresponded to improved accuracy and precision in MBF quantification, whereas lower tracer uptake resulted in higher noise in dynamic PET and poorer parameter estimates. Utilizing denoising techniques or DL approaches can mitigate noise-induced bias in PET parametric imaging.

Hybrid method for automatic initialization and segmentation of ventricular on large-scale cardiovascular magnetic resonance images.

Pan N, Li Z, Xu C, Gao J, Hu H

pubmed logopapersMay 7 2025
Cardiovascular diseases are the number one cause of death globally, making cardiac magnetic resonance image segmentation a popular research topic. Existing schemas relying on manual user interaction or semi-automatic segmentation are infeasible when dealing thousands of cardiac MRI studies. Thus, we proposed a full automatic and robust algorithm for large-scale cardiac MRI segmentation by combining the advantages of deep learning localization and 3D-ASM restriction. The proposed method comprises several key techniques: 1) a hybrid network integrating CNNs and Transformer as a encoder with the EFG (Edge feature guidance) module (named as CTr-HNs) to localize the target regions of the cardiac on MRI images, 2) initial shape acquisition by alignment of coarse segmentation contours to the initial surface model of 3D-ASM, 3) refinement of the initial shape to cover all slices of MRI in the short axis by complex transformation. The datasets used are from the UK BioBank and the CAP (Cardiac Atlas Project). In cardiac coarse segmentation experiments on MR images, Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) are used to evaluate segmentation performance. In SPASM experiments, Point-to-surface (P2S) distances, Dice score are compared between automatic results and ground truth. The CTr-HNs from our proposed method achieves Dice coefficients (Dice), mean contour distances (MCD), and mean Hausdorff distances (HD95) of 0.95, 0.10 and 1.54 for the LV segmentation respectively, 0.88, 0.13 and 1.94 for the LV myocardium segmentation, and 0.91, 0.24 and 3.25 for the RV segmentation. The overall P2S errors from our proposed schema is 1.45 mm. For endocardium and epicardium, the Dice scores are 0.87 and 0.91 respectively. Our experimental results show that the proposed schema can automatically analyze large-scale quantification from population cardiac images with robustness and accuracy.

Impact of the recent advances in coronary artery disease imaging on pilot medical certification and aviation safety: current state and future perspective.

Benjamin MM, Rabbat MG, Park W, Benjamin M, Davenport E

pubmed logopapersMay 7 2025
Coronary artery disease (CAD) is highly prevalent among pilots due to the nature of their lifestyle, and occupational stresses. CAD is one the most common conditions affecting pilots' medical certification and is frequently nondisclosed by pilots fearing the loss of their certification. Traditional screening methods, such as resting electrocardiograms (EKGs) and functional stress tests, have limitations, especially in detecting non-obstructive CAD. Recent advances in cardiac imaging are challenging the current paradigms of CAD screening and risk assessment protocols, offering tools uniquely suited to address the occupational health challenges faced by pilots. Coronary artery calcium scoring (CACS) has proven valuable in refining risk stratification in asymptomatic individuals. Coronary computed tomography angiography (CCTA), is being increasingly adopted as a superior tool for ruling out CAD in symptomatic individuals, assessing plaque burden as well as morphologically identifying vulnerable plaque. CT-derived fractional flow reserve (CT-FFR) adds a physiologic component to the anatomical prowess of CCTA. Cardiac magnetic resonance imaging (CMR) is now used as a prognosticating tool following a coronary event as well as a stress testing modality. Investigational technologies like pericoronary fat attenuation and artificial intelligence (AI)-enabled plaque quantification hold the promise of enhancing diagnostic accuracy and risk stratification. This review highlights the interplay between occupational demands, regulatory considerations, and the limitations of the traditional modalities for pilot CAD screening and surveillance. We also discuss the potential role of the recent advances in cardiac imaging in optimizing pilot health and flight safety.

Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models

Matthias Höfler, Francesco Regazzoni, Stefano Pagani, Elias Karabelas, Christoph Augustin, Gundolf Haase, Gernot Plank, Federica Caforio

arxiv logopreprintMay 6 2025
Active stress models in cardiac biomechanics account for the mechanical deformation caused by muscle activity, thus providing a link between the electrophysiological and mechanical properties of the tissue. The accurate assessment of active stress parameters is fundamental for a precise understanding of myocardial function but remains difficult to achieve in a clinical setting, especially when only displacement and strain data from medical imaging modalities are available. This work investigates, through an in-silico study, the application of physics-informed neural networks (PINNs) for inferring active contractility parameters in time-dependent cardiac biomechanical models from these types of imaging data. In particular, by parametrising the sought state and parameter field with two neural networks, respectively, and formulating an energy minimisation problem to search for the optimal network parameters, we are able to reconstruct in various settings active stress fields in the presence of noise and with a high spatial resolution. To this end, we also advance the vanilla PINN learning algorithm with the use of adaptive weighting schemes, ad-hoc regularisation strategies, Fourier features, and suitable network architectures. In addition, we thoroughly analyse the influence of the loss weights in the reconstruction of active stress parameters. Finally, we apply the method to the characterisation of tissue inhomogeneities and detection of fibrotic scars in myocardial tissue. This approach opens a new pathway to significantly improve the diagnosis, treatment planning, and management of heart conditions associated with cardiac fibrosis.
Page 23 of 24239 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.