Sort by:
Page 22 of 2152148 results

Measuring kidney stone volume - practical considerations and current evidence from the EAU endourology section.

Grossmann NC, Panthier F, Afferi L, Kallidonis P, Somani BK

pubmed logopapersJul 1 2025
This narrative review provides an overview of the use, differences, and clinical impact of current methods for kidney stone volume assessment. The different approaches to volume measurement are based on noncontrast computed tomography (NCCT). While volume measurement using formulas is sufficient for smaller stones, it tends to overestimate volume for larger or irregularly shaped calculi. In contrast, software-based segmentation significantly improves accuracy and reproducibility, and artificial intelligence based volumetry additionally shows excellent agreement with reference standards while reducing observer variability and measurement time. Moreover, specific CT preparation protocols may further enhance image quality and thus improve measurement accuracy. Clinically, stone volume has proven to be a superior predictor of stone-related events during follow-up, spontaneous stone passage under conservative management, and stone-free rates after shockwave lithotripsy (SWL) and ureteroscopy (URS) compared to linear measurements. Although manual measurement remains practical, its accuracy diminishes for complex or larger stones. Software-based segmentation and volumetry offer higher precision and efficiency but require established standards and broader access to dedicated software for routine clinical use.

Automated Scoliosis Cobb Angle Classification in Biplanar Radiograph Imaging With Explainable Machine Learning Models.

Yu J, Lahoti YS, McCandless KC, Namiri NK, Miyasaka MS, Ahmed H, Song J, Corvi JJ, Berman DC, Cho SK, Kim JS

pubmed logopapersJul 1 2025
Retrospective cohort study. To quantify the pathology of the spine in patients with scoliosis through one-dimensional feature analysis. Biplanar radiograph (EOS) imaging is a low-dose technology offering high-resolution spinal curvature measurement, crucial for assessing scoliosis severity and guiding treatment decisions. Machine learning (ML) algorithms, utilizing one-dimensional image features, can enable automated Cobb angle classification, improving accuracy and efficiency in scoliosis evaluation while reducing the need for manual measurements, thus supporting clinical decision-making. This study used 816 annotated AP EOS spinal images with a spine segmentation mask and a 10° polynomial to represent curvature. Engineered features included the first and second derivatives, Fourier transform, and curve energy, normalized for robustness. XGBoost selected the top 32 features. The models classified scoliosis into multiple groups based on curvature degree, measured through Cobb angle. To address the class imbalance, stratified sampling, undersampling, and oversampling techniques were used, with 10-fold stratified K-fold cross-validation for generalization. An automatic grid search was used for hyperparameter optimization, with K-fold cross-validation (K=3). The top-performing model was Random Forest, achieving an ROC AUC of 91.8%. An accuracy of 86.1%, precision of 86.0%, recall of 86.0%, and an F1 score of 85.1% were also achieved. Of the three techniques used to address class imbalance, stratified sampling produced the best out-of-sample results. SHAP values were generated for the top 20 features, including spine curve length and linear regression error, with the most predictive features ranked at the top, enhancing model explainability. Feature engineering with classical ML methods offers an effective approach for classifying scoliosis severity based on Cobb angle ranges. The high interpretability of features in representing spinal pathology, along with the ease of use of classical ML techniques, makes this an attractive solution for developing automated tools to manage complex spinal measurements.

Convolutional neural network-based measurement of crown-implant ratio for implant-supported prostheses.

Zhang JP, Wang ZH, Zhang J, Qiu J

pubmed logopapersJul 1 2025
Research has revealed that the crown-implant ratio (CIR) is a critical variable influencing the long-term stability of implant-supported prostheses in the oral cavity. Nevertheless, inefficient manual measurement and varied measurement methods have caused significant inconvenience in both clinical and scientific work. This study aimed to develop an automated system for detecting the CIR of implant-supported prostheses from radiographs, with the objective of enhancing the efficiency of radiograph interpretation for dentists. The method for measuring the CIR of implant-supported prostheses was based on convolutional neural networks (CNNs) and was designed to recognize implant-supported prostheses and identify key points around it. The experiment used the You Only Look Once version 4 (Yolov4) to locate the implant-supported prosthesis using a rectangular frame. Subsequently, two CNNs were used to identify key points. The first CNN determined the general position of the feature points, while the second CNN finetuned the output of the first network to precisely locate the key points. The network underwent testing on a self-built dataset, and the anatomic CIR and clinical CIR were obtained simultaneously through the vertical distance method. Key point accuracy was validated through Normalized Error (NE) values, and a set of data was selected to compare machine and manual measurement results. For statistical analysis, the paired t test was applied (α=.05). A dataset comprising 1106 images was constructed. The integration of multiple networks demonstrated satisfactory recognition of implant-supported prostheses and their surrounding key points. The average NE value for key points indicated a high level of accuracy. Statistical studies confirmed no significant difference in the crown-implant ratio between machine and manual measurement results (P>.05). Machine learning proved effective in identifying implant-supported prostheses and detecting their crown-implant ratios. If applied as a clinical tool for analyzing radiographs, this research can assist dentists in efficiently and accurately obtaining crown-implant ratio results.

Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy.

Ding M, Maspero M, Littooij AS, van Grotel M, Fajardo RD, van Noesel MM, van den Heuvel-Eibrink MM, Janssens GO

pubmed logopapersJul 1 2025
This study aimed to develop a computed tomography (CT)-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors and evaluate its robustness across multiple datasets. In-house postoperative CTs from pediatric patients with renal tumors and neuroblastoma (n = 189) and a public dataset (n = 189) with CTs covering thoracoabdominal regions were used. Seventeen OARs were delineated: nine by clinicians (Type 1) and eight using TotalSegmentator (Type 2). Auto-segmentation models were trained using in-house (Model-PMC-UMCU) and a combined dataset of public data (Model-Combined). Performance was assessed with Dice Similarity Coefficient (DSC), 95 % Hausdorff Distance (HD95), and mean surface distance (MSD). Two clinicians rated clinical acceptability on a 5-point Likert scale across 15 patient contours. Model robustness was evaluated against sex, age, intravenous contrast, and tumor type. Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while the spleen and heart ranged between 0.90 and 0.95. The stomach-bowel and pancreas exhibited DSC values below 0.90. Model-Combined demonstrated improved robustness across both datasets. Clinical evaluation revealed good usability, with both clinicians rating six of nine Type 1 OARs above four and six of eight Type 2 OARs above three. Significant performance differences were only found across age groups in both datasets, specifically in the left lung and pancreas. The 0-2 age group showed the lowest performance. A multi-organ segmentation model was developed, showcasing enhanced robustness when trained on combined datasets. This model is suitable for various OARs and can be applied to multiple datasets in clinical settings.

Automated vertebrae identification and segmentation with structural uncertainty analysis in longitudinal CT scans of patients with multiple myeloma.

Madzia-Madzou DK, Jak M, de Keizer B, Verlaan JJ, Minnema MC, Gilhuijs K

pubmed logopapersJul 1 2025
Optimize deep learning-based vertebrae segmentation in longitudinal CT scans of multiple myeloma patients using structural uncertainty analysis. Retrospective CT scans from 474 multiple myeloma patients were divided into train (179 patients, 349 scans, 2005-2011) and test cohort (295 patients, 671 scans, 2012-2020). An enhanced segmentation pipeline was developed on the train cohort. It integrated vertebrae segmentation using an open-source deep learning method (Payer's) with a post-hoc structural uncertainty analysis. This analysis identified inconsistencies, automatically correcting them or flagging uncertain regions for human review. Segmentation quality was assessed through vertebral shape analysis using topology. Metrics included 'identification rate', 'longitudinal vertebral match rate', 'success rate' and 'series success rate' and evaluated across age/sex subgroups. Statistical analysis included McNemar and Wilcoxon signed-rank tests, with p < 0.05 indicating significant improvement. Payer's method achieved an identification rate of 95.8% and success rate of 86.7%. The proposed pipeline automatically improved these metrics to 98.8% and 96.0%, respectively (p < 0.001). Additionally, 3.6% of scans were marked for human inspection, increasing the success rate from 96.0% to 98.8% (p < 0.001). The vertebral match rate increased from 97.0% to 99.7% (p < 0.001), and the series success rate from 80.0% to 95.4% (p < 0.001). Subgroup analysis showed more consistent performance across age and sex groups. The proposed pipeline significantly outperforms Payer's method, enhancing segmentation accuracy and reducing longitudinal matching errors while minimizing evaluation workload. Its uncertainty analysis ensures robust performance, making it a valuable tool for longitudinal studies in multiple myeloma.

[A deep learning method for differentiating nasopharyngeal carcinoma and lymphoma based on MRI].

Tang Y, Hua H, Wang Y, Tao Z

pubmed logopapersJul 1 2025
<b>Objective:</b>To development a deep learning(DL) model based on conventional MRI for automatic segmentation and differential diagnosis of nasopharyngeal carcinoma(NPC) and nasopharyngeal lymphoma(NPL). <b>Methods:</b>The retrospective study included 142 patients with NPL and 292 patients with NPC who underwent conventional MRI at Renmin Hospital of Wuhan University from June 2012 to February 2023. MRI from 80 patients were manually segmented to train the segmentation model. The automatically segmented regions of interest(ROIs) formed four datasets: T1 weighted images(T1WI), T2 weighted images(T2WI), T1 weighted contrast-enhanced images(T1CE), and a combination of T1WI and T2WI. The ImageNet-pretrained ResNet101 model was fine-tuned for the classification task. Statistical analysis was conducted using SPSS 22.0. The Dice coefficient loss was used to evaluate performance of segmentation task. Diagnostic performance was assessed using receiver operating characteristic(ROC) curves. Gradient-weighted class activation mapping(Grad-CAM) was imported to visualize the model's function. <b>Results:</b>The DICE score of the segmentation model reached 0.876 in the testing set. The AUC values of classification models in testing set were as follows: T1WI: 0.78(95%<i>CI</i> 0.67-0.81), T2WI: 0.75(95%<i>CI</i> 0.72-0.86), T1CE: 0.84(95%<i>CI</i> 0.76-0.87), and T1WI+T2WI: 0.93(95%<i>CI</i> 0.85-0.94). The AUC values for the two clinicians were 0.77(95%<i>CI</i> 0.72-0.82) for the junior, and 0.84(95%<i>CI</i> 0.80-0.89) for the senior. Grad-CAM analysis revealed that the central region of the tumor was highly correlated with the model's classification decisions, while the correlation was lower in the peripheral regions. <b>Conclusion:</b>The deep learning model performed well in differentiating NPC from NPL based on conventional MRI. The T1WI+T2WI combination model exhibited the best performance. The model can assist in the early diagnosis of NPC and NPL, facilitating timely and standardized treatment, which may improve patient prognosis.

Estimating Periodontal Stability Using Computer Vision.

Feher B, Werdich AA, Chen CY, Barrow J, Lee SJ, Palmer N, Feres M

pubmed logopapersJul 1 2025
Periodontitis is a severe infection affecting oral and systemic health and is traditionally diagnosed through clinical probing-a process that is time-consuming, uncomfortable for patients, and subject to variability based on the operator's skill. We hypothesized that computer vision can be used to estimate periodontal stability from radiographs alone. At the tooth level, we used intraoral radiographs to detect and categorize individual teeth according to their periodontal stability and corresponding treatment needs: healthy (prevention), stable (maintenance), and unstable (active treatment). At the patient level, we assessed full-mouth series and classified patients as stable or unstable by the presence of at least 1 unstable tooth. Our 3-way tooth classification model achieved an area under the receiver operating characteristic curve of 0.71 for healthy teeth, 0.56 for stable, and 0.67 for unstable. The model achieved an F<sub>1</sub> score of 0.45 for healthy teeth, 0.57 for stable, and 0.54 for unstable (recall, 0.70). Saliency maps generated by gradient-weighted class activation mapping primarily showed highly activated areas corresponding to clinically probed regions around teeth. Our binary patient classifier achieved an area under the receiver operating characteristic curve of 0.68 and an F<sub>1</sub> score of 0.74 (recall, 0.70). Taken together, our results suggest that it is feasible to estimate periodontal stability, which traditionally requires clinical and radiographic examination, from radiographic signal alone using computer vision. Variations in model performance across different classes at the tooth level indicate the necessity of further refinement.

Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study.

Wang H, Qiao X, Ding W, Chen G, Miao Y, Guo R, Zhu X, Cheng Z, Xu J, Li B, Huang Q

pubmed logopapersJul 1 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate organ segmentation using PET-only data remains challenging. This study develops and validates a deep learning model for multi-organ PET segmentation across varied imaging conditions and tracers, addressing critical needs for fully PET-based quantitative analysis. This retrospective study employed a 3D deep learning-based model for automated multi-organ segmentation on PET images acquired under diverse conditions, including low-dose and non-attenuation-corrected scans. Using a dataset of 798 patients from multiple centers with varied tracers, model robustness and generalizability were evaluated via multi-center and cross-tracer tests. Ground-truth labels for 23 organs were generated from CT images, and segmentation accuracy was assessed using the Dice similarity coefficient (DSC). In the multi-center dataset from four different institutions, our model achieved average DSC values of 0.834, 0.825, 0.819, and 0.816 across varying dose reduction factors and correction conditions for FDG PET images. In the cross-tracer dataset, the model reached average DSC values of 0.737, 0.573, 0.830, 0.661, and 0.708 for DOTATATE, FAPI, FDG, Grazytracer, and PSMA, respectively. The proposed model demonstrated effective, fully PET-based multi-organ segmentation across a range of imaging conditions, centers, and tracers, achieving high robustness and generalizability. These findings underscore the model's potential to enhance clinical diagnostic workflows by supporting ultra-low dose PET imaging. Not applicable. This is a retrospective study based on collected data, which has been approved by the Research Ethics Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine.

CT-based clinical-radiomics model to predict progression and drive clinical applicability in locally advanced head and neck cancer.

Bruixola G, Dualde-Beltrán D, Jimenez-Pastor A, Nogué A, Bellvís F, Fuster-Matanzo A, Alfaro-Cervelló C, Grimalt N, Salhab-Ibáñez N, Escorihuela V, Iglesias ME, Maroñas M, Alberich-Bayarri Á, Cervantes A, Tarazona N

pubmed logopapersJul 1 2025
Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk stratification. This single-centre observational study collected clinical data and baseline CT scans from 171 LAHNSCC patients treated with chemoradiation. The dataset was divided into training (80%) and test (20%) sets, with a 5-fold cross-validation on the training set. Researchers extracted 108 radiomics features from each primary tumour and applied survival analysis and classification models to predict progression-free survival (PFS) and 5-year progression, respectively. Performance was evaluated using inverse probability of censoring weights and c-index for the PFS model and AUC, sensitivity, specificity, and accuracy for the 5-year progression model. Feature importance was measured by the SHapley Additive exPlanations (SHAP) method and patient stratification was assessed through Kaplan-Meier curves. The final dataset included 171 LAHNSCC patients, with 53% experiencing disease progression at 5 years. The random survival forest model best predicted PFS, with an AUC of 0.64 and CI of 0.66 on the test set, highlighting 4 radiomics features and TNM8 as significant contributors. It successfully stratified patients into low and high-risk groups (log-rank p < 0.005). The extreme gradient boosting model most effectively predicted a 5-year progression, incorporating 12 radiomics features and four clinical variables, achieving an AUC of 0.74, sensitivity of 0.53, specificity of 0.81, and accuracy of 0.66 on the test set. The combined clinical-radiomics model improved the standard TNM8 and clinical variables in predicting 5-year progression though further validation is necessary. Question There is an unmet need for non-invasive biomarkers to guide treatment in locally advanced head and neck cancer. Findings Clinical data (TNM8 staging, primary tumour site, age, and smoking) plus radiomics improved 5-year progression prediction compared with the clinical comprehensive model or TNM staging alone. Clinical relevance SHAP simplifies complex machine learning radiomics models for clinicians by using easy-to-understand graphical representations, promoting explainability.

The value of machine learning based on spectral CT quantitative parameters in the distinguishing benign from malignant thyroid micro-nodules.

Song Z, Liu Q, Huang J, Zhang D, Yu J, Zhou B, Ma J, Zou Y, Chen Y, Tang Z

pubmed logopapersJul 1 2025
More cases of thyroid micro-nodules have been diagnosed annually in recent years because of advancements in diagnostic technologies and increased public health awareness. To explore the application value of various machine learning (ML) algorithms based on dual-layer spectral computed tomography (DLCT) quantitative parameters in distinguishing benign from malignant thyroid micro-nodules. All 338 thyroid micro-nodules (177 malignant micro-nodules and 161 benign micro-nodules) were randomly divided into a training cohort (n = 237) and a testing cohort (n = 101) at a ratio of 7:3. Four typical radiological features and 19 DLCT quantitative parameters in the arterial phase and venous phase were measured. Recursive feature elimination was employed for variable selection. Three ML algorithms-support vector machine (SVM), logistic regression (LR), and naive Bayes (NB)-were implemented to construct predictive models. Predictive performance was evaluated via receiver operating characteristic (ROC) curve analysis. A variable set containing 6 key variables with "one standard error" rules was identified in the SVM model, which performed well in the training and testing cohorts (area under the ROC curve (AUC): 0.924 and 0.931, respectively). A variable set containing 2 key variables was identified in the NB model, which performed well in the training and testing cohorts (AUC: 0.882 and 0.899, respectively). A variable set containing 8 key variables was identified in the LR model, which performed well in the training and testing cohorts (AUC: 0.924 and 0.925, respectively). And nine ML models were developed with varying variable sets (2, 6, or 8 variables), all of which consistently achieved AUC values above 0.85 in the training, cross validation (CV)-Training, CV-Validation, and testing cohorts. Artificial intelligence-based DLCT quantitative parameters are promising for distinguishing benign from malignant thyroid micro-nodules.
Page 22 of 2152148 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.